Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
b: góc EDH=góc BAF
góc FDH=góc ECB
mà góc BAF=góc ECB
nên góc EDH=góc FDH
=>DH là phân giác của góc EDF
a: Xét tứ giác ADHE có
góc AdH+góc AEH=180 độ
=>ADHElà tứ giác nội tiếp
I là trung điểm của AH
b: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
góc EDB=góc BAF
góc FDB=góc ECB
mà góc BAF=góc ECB
nên góc EDB=góc FDB
=>DB là phân giác của góc EDF