Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta có:
\(y_0=\left(m+1\right)x_0-3m+4\)
\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)
Gọi M (xM; yM) là điểm cố dịnh mà đường thẳng đi qua
=> (-5m+4)xM + (3m-2)yM+ 3m-4=0 \(\forall m\in R\)
<=> -5mxM + 4xM+ 3myM -2yM +3m -4 =0 \(\forall m\in R\)
<=> (-5mxM +3myM+3m) + (4xM-2yM-4) =0 \(\forall m\in R\)
<=> m(-5xM+3yM+3) + 2( 2xM-yM-2) =0 \(\forall m\in R\)
<=>\(\hept{\begin{cases}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{cases}}\) \(\forall m\in R\)
\(\Leftrightarrow\hept{\begin{cases}x_M=3\\y_M=4\end{cases}}\)
VẬY M( 3;4 )
Chúc học tốt!!
Áp dụng: Am+B=0 \(\forall m\in R\)
\(\Rightarrow\hept{\begin{cases}A=0\\B=0\end{cases}}\)
Chắc hàm là \(y=\left(m+1\right)x+m-1\)
Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0+m-1\)
\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)
Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)
cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân giúp e vs
Giả sử đồ thị hàm số đã cho luôn đi qua điểm cố định \(\left(x_0,y_0\right)\)với mọi \(m\).
\(y_0=\left(3m^2+1\right)x_0+m^2-4,\forall m\)
\(\Leftrightarrow m^2\left(3x_0+1\right)+x_0-y_0-4=0,\forall m\)
\(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\x_0-y_0-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-\frac{1}{3}\\y_0=-\frac{13}{3}\end{cases}}\)
Vậy điểm cố định mà đồ thị hàm số đã cho luôn đi qua có tọa độ là \(\left(-\frac{1}{3},-\frac{13}{3}\right)\).
Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)
\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)
\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)
\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)
Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)
Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Theo đề bài, ta có:
\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m
\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)
Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.