Chứng minh rằng đường thẳng y=(m-2)x+3m-1 luôn đi qua 1 điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2023

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

5 tháng 12 2023

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

NV
18 tháng 8 2021

Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta có:

\(y_0=\left(m+1\right)x_0-3m+4\)

\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)

Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?

11 tháng 11 2018

Gọi M (xM; yM) là điểm cố dịnh mà đường thẳng đi qua

=> (-5m+4)xM + (3m-2)yM+ 3m-4=0                      \(\forall m\in R\)

<=> -5mxM + 4xM+ 3myM -2yM +3m -4 =0              \(\forall m\in R\)

<=> (-5mxM +3myM+3m) + (4xM-2yM-4) =0              \(\forall m\in R\)

<=> m(-5xM+3yM+3) + 2( 2xM-yM-2) =0                    \(\forall m\in R\)

<=>\(\hept{\begin{cases}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{cases}}\)                            \(\forall m\in R\)

\(\Leftrightarrow\hept{\begin{cases}x_M=3\\y_M=4\end{cases}}\)

VẬY M( 3;4 )

Chúc học tốt!!

11 tháng 11 2018

Áp dụng: Am+B=0         \(\forall m\in R\)

             \(\Rightarrow\hept{\begin{cases}A=0\\B=0\end{cases}}\)

NV
14 tháng 9 2021

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

21 tháng 9 2021

cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân                              giúp e vs 

 

DD
30 tháng 9 2021

Giả sử đồ thị hàm số đã cho luôn đi qua điểm cố định \(\left(x_0,y_0\right)\)với mọi \(m\).

\(y_0=\left(3m^2+1\right)x_0+m^2-4,\forall m\)

\(\Leftrightarrow m^2\left(3x_0+1\right)+x_0-y_0-4=0,\forall m\)

\(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\x_0-y_0-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-\frac{1}{3}\\y_0=-\frac{13}{3}\end{cases}}\)

Vậy điểm cố định mà đồ thị hàm số đã cho luôn đi qua có tọa độ là \(\left(-\frac{1}{3},-\frac{13}{3}\right)\).