Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)
= n2(n + 1).(n3 - n2 + 2) = n2(n + 1).(n3 + 1 + 1 - n2) = n2(n + 1).(n +1). (n2 - n + 1 - n + 1) = n2( n + 1)2.(n2 - 2n + 2)
Với n > 1 => n2 - 2n + 1 < n2 - 2n + 2 < n2
=> (n - 1)2 < n2 - 2n + 2 < n2
(n - 1)2 ; n2 là 2 số chính phương liên tiếp => n2 - 2n + 2 không thể là số chính phương
=> A không là số chính phương
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
3A=3.(3^0+3^1+3^2+3^3+...+3^30)
3A=3^1+3^2+3^3+....+3^31
-
A=3^0+3^1+3^2+3^3+...+3^30
-----------------------------------------------------
2A=3^31-1=3^28+3^3-1=(3^4)^7.3^3-1=(...1).(...7)-1=...6
Suy ra A = ...3 . số chính phương không có tận cùng bằng 3
nhớ tick cho mình nhé chắc chắn đúng
n≡2004^4+2004^3+2004^2+23≡0^4+0^3+0^2+2≡2 (mod 3)
Vậy n=3k+2 (k∈N) nên n không là số chính phương
\(S=1+3+3^2+3^3+....+3^{30}\)
\(3S=\left(1+3+3^2+3^3+...+3^{30}\right).3\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=\left(3+3^2+3^3+...+3^{31}\right)\)\(-\left(1+3+3^2+3^3+...+3^{30}\right)\)
\(2S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}\)
=>S không phải là số chính phương
Lời giải:
Đătk $1992=a$ thì:
$N=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=4(a^2+3a+3)+2$
$\Rightarrow N$ chia $4$ dư $2$
Mà 1 số chính phương chia $4$ chỉ có thể có dư là $0$ hoặc $1$.
$\Rightarrow N$ không thể là scp.
Ta có đpcm.