Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lớn nhất là 4321, số nhỏ nhất là 1234. Nếu tồn tại hai số được lập là x và y mà x chia hết cho y thì thương bằng 2 , hoặc 3.
Cách 1. Nếu thương bằng 2 thì các chữ số của x phải là 2,4,6,8, trái với đề bài. Nếu thương bằng 3 thì x chia hết cho 3, trái với đề bài vì tổng của các chữ số của x bằng 10.
Cách 2. Chú ý rằng x và y có tổng các chữ số bằng 10 nên là các số chia cho 9 dư 1(1) . Nếu thương phép chia x cho y bằng 2 , hoặc bằng3 thì số bị chia x chia 9 thứ tự dư 2, dư3, trái với (1).
Vậy không tồn tại hai số nào mà một số chia hết cho số còn lại
( Tuỳ theo cách hiểu mà các bạn chọn 1 trong 2 cách nhé)
không làm thế thì thà ko đăng còn hơn, nhất định phải còn 1 cách nào hay và nhanh gọn nhất, đâu phải mõi bài toán chỉ có 1 cách
sợ quá đi mất
gần nhà mik có ca covid r huhu
ngay cạnh nhà lun
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)