Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích ve...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2023

Ta có M là trung điểm của AC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

          K là trung điểm của BC nên Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

Cách phân tích một vecto theo hai vecto không cùng phương cực hay, chi tiết - Toán lớp 10

                      Bạn tự vẽ hình minh họa nha :>

11 tháng 1 2023

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có  =  =>  = 

 = - = -  = -

Theo quy tắc 3 điểm đối với tổng vec-tơ:

+ =>  =  = ().

AK là trung tuyến thuộc cạnh BC nên

 = 2 => += 2

Từ đây ta có  = + =>  = - - .

BM là trung tuyến thuộc đỉnh B nên:

= 2 => -  + = 2

=>  =  + .

13 tháng 10 2021

a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

Ta có:

\(\overrightarrow{AB}=\overrightarrow{AM}+\overrightarrow{MB}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}=\overrightarrow{AM}-\overrightarrow{BN}+\overrightarrow{MN}\)

Vì $AM,BN$ là trung tuyến nên $M,N$ lần lượt là trung điểm của $BC, AC$

$\Rightarrow MN$ là đường trung bình của tam giác $ABC$ ứng với $AB$

\(\Rightarrow \overrightarrow{MN}=\frac{1}{2}\overrightarrow{BA}=-\frac{1}{2}\overrightarrow{AB}\). Do đó:

\(\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}-\frac{1}{2}\overrightarrow{AB}\Leftrightarrow \frac{3}{2}\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}\)

\(\Leftrightarrow \overrightarrow{AB}=\frac{2}{3}\overrightarrow{AM}-\frac{2}{3}\overrightarrow{BN}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:undefined

26 tháng 10 2021

\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\)

27 tháng 10 2021

\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)