Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).
b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .
=> ( đpcm ).
Chứng minh tính chất: Nếu mọi số nguyên k (2 \(\le\) k \(\le\)[ \(\sqrt{N}\)] ) đều không là ước của N thì N là số nguyên tố
C/M: Giả sử N không là số nguyên tố
= N = kx1 ky2 ...kmz trong đó 2 \(\le\) k1 < k2 < ...< kn
=> N > kn1 \(\ge\)k12
=> k1 \(\le\) \(\sqrt{N}\); k nguyên => k1 \(\le\) [\(\sqrt{N}\)]
mà k1 là ước của N => Mâu thuẫn với giả thiết
Vậy N kà số nguyên tố