Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)We have: \(a-b=8\)
\(\Rightarrow\left(a-b\right)^2=64\)
\(\Rightarrow a^2-2ab+b^2=64\)
\(\Rightarrow a^2+2ab+b^2-4ab=64\)
\(\Rightarrow\left(a+b\right)^2=64+4ab=64+4\cdot10=64+40=104\)
Hence: \(\left(a+b\right)^2=104\)
2)We have: \(a+b=8\)
\(\Rightarrow\left(a+b\right)^2=64\)
\(\Rightarrow a^2+2ab+b^2=64\)
\(\Rightarrow a^2-2ab+b^2+4ab=64\)
\(\Rightarrow\left(a-b\right)^2=64-4ab=64-4\cdot10=64-40=24\)
Hence \(\left(a-b\right)^2=24\)
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
\(-8x^3+12x^2y-6xy^2+y^3=y^3-3.y.\left(2x\right)+3.y.\left(2x\right)^2-\left(2x\right)^3=\left(y-2x\right)^3\)
\(=-8x^3+12x^2y-6xy^2+y^3\)
\(=\left(-2x\right)^3+3\left(-2x\right)^2y+3\left(-2x\right)y^2+y^3\)
\(=\left(-2x+y\right)^3\)