Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ứng dụng 1 phần cách giải của bài này:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24
Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'
Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:
\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)
Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)
Theo bổ đề về diện tích tam giác chứng minh ở đầu:
\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)
\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)
a) Chứng minh B 1 , C 1 , D 1 lần lượt là trung điểm của các cạnh SB, SC, SD
Ta có:
⇒ A 1 B 1 là đường trung bình của tam giác SAB.
⇒ B 1 là trung điểm của SB (đpcm)
*Chứng minh tương tự ta cũng được:
• C 1 là trung điểm của SC.
• D 1 là trung điểm của SD.
b) Chứng minh B 1 B 2 = B 2 B , C 1 C 2 = C 2 C , D 1 D 2 = D 2 D .
⇒ A 2 B 2 là đường trung bình của hình thang A 1 B 1 B A
⇒ B 2 là trung điểm của B 1 B
⇒ B 1 B 2 = B 2 B (đpcm)
*Chứng minh tương tự ta cũng được:
• C 2 là trung điểm của C 1 C 2 ⇒ C 1 C 2 = C 2 C
• D 2 là trung điểm của D 1 D 2 ⇒ D 1 D 2 = D 2 D .
c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D v à A 2 B 2 C 2 D 2 . A B C D
Trong tam giác A'BC, có IJ là đường trung bình
\(\Rightarrow IJ//BC\Rightarrow IJ//\left(ABC\right)\)
Qua O kẻ đường thẳng song song BC lần lượt cắt AB và AC tại E và F
\(\Rightarrow EF\in\left(IJO\right)\)
Trong mặt phẳng (ABB'A'), nối EI kéo dài cắt A'B' tại P
Trong mặt phẳng (ACC'A'), nối JF kéo dài cắt A'C' tại Q
\(\Rightarrow PQFE\) là tiết diện của (IJO) và lăng trụ
Mặt khác (ABC) và (A'B'C') là 2 mp song song nên \(PQ//EF\), do tính đối xứng của hai hình vuông ABB'A' và ACC'A' nên EP=FQ
\(\Rightarrow PQFE\) là hình thang cân
O là trọng tâm đáy \(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}=\frac{2}{3}\Rightarrow AE=AF=EF=\frac{2a}{3}\)
Talet \(\Rightarrow\frac{CF}{A'Q}=\frac{A'J}{JC}=1\Rightarrow A'Q=CF=\frac{a}{3}\)
Tương tự có \(A'P=\frac{a}{3}\Rightarrow PQ=\frac{a}{3}\)
Lấy K trên AB sao cho \(AK=\frac{a}{3}\Rightarrow PK||AA'\Rightarrow PK\perp AB\) và \(PK=AA'=a\)
\(EP=\sqrt{PK^2+EK^2}=\sqrt{a^2+\left(\frac{a}{3}\right)^2}=\frac{a\sqrt{10}}{3}\)
Hình thang cân có đủ 3 kích thước (2 cạnh đáy, cạnh bên), bạn tự tính diện tích ra nhé