cho a,b,c là 3 cạnh tam giác chứng minh (a+b+c)^2<=9abc với a<=b<=c
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Theo đề bài :

\(a\le b\le c\Rightarrow\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

 Ta thấy \(\left(2b+c\right)^2-9bc\)

\(=4b^2+c^2+4bc-9bc\)

\(=4b^2+c^2-5bc\)

\(=4b^2-4bc+c^2-bc\)

\(=4b\left(b-c\right)-c\left(b-c\right)\)

\(\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\left(1\right)\)

\(a\le b\le c\Rightarrow c< a+b\le2b< 4b\)

\(\Rightarrow\left\{{}\begin{matrix}4b-c>0\\b-c\le0\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\le0\)

\(\Rightarrow\left(2b+c\right)^2\le9bc\)

\(\Rightarrow\left(a+b+c\right)^2\le9bc\left(dpcm\right)\)

Nên sửa lại đề bài \(\left(a+b+c\right)^2\le9abc\rightarrow\left(a+b+c\right)^2\le9bc\), bạn xem lại đề bài nhé!

5 tháng 9 2023

 

cho a,b,c là 3 cạnh tam giác chứng minh (a+b+c)^2<=9abc với a<=b<=c mình ko  biết

 

13 tháng 3 2016

=>2a<a+b+c

=>2a-a<a+b+c-a

=>a<b+c (BĐT đúng,đây là BĐT tam giác)

Vậy ..................

25 tháng 11 2017

Có a,b,c là độ dài 3 cạnh 1 tam giác.

2 tháng 9 2015

Vế trái = \(\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=3+\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\)

Vì a;b;c là độ dài 3 cạnh của tam giác nên a + b > c => \(\frac{c}{a+b}<1\) => \(\frac{c}{a+b}<\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}<\frac{2b}{a+b+c};\frac{a}{b+c}<\frac{2a}{a+b+c}\)

=> \(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}<\frac{2c+2b+2a}{a+b+c}=2\)

Vế trái < 3 + 2 = 5 

=> đpcm

30 tháng 3 2017

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc