Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)
\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)
\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)
b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)
\(=3x^3-x^4+4-5x\)
Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)
Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)
\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)
\(=x^3+10x^2-5x^4+10-3x\)
Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)
a) A(x) = 2x–3x2–3+4x3–x2–2x–5 = \(4x^3-4x^2-4x-8.\)
B(x) = 3x–4x3–1+3x2–5x–3x2\(=-4x^3-2x-1\)
b) M(x) = A(x) + B(x) \(=-4x^2-6x-9\)
c) Để M(x) = –9 => M(x) = \(=-4x^2-6x-9\)= -9
\(=-4x^2-6x=0\)
\(\Leftrightarrow-2x\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=3\Leftrightarrow x=\frac{3}{2}\end{cases}}}\)
d) Ta có: đa thức K(x) = 5x–1
\(\Leftrightarrow K\left(x\right)=5x-1=0\)
\(\Leftrightarrow5x=1\)
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy....
Trả lời:
a, P(x) = - 3x2 + 3x - ( - 4x3 ) + 5 - (- 2x4 ) - x + 1
= - 3x2 + 3x + 4x3 + 5 + 2x4 - x + 1
= 2x4 + 4x3 - 3x2 + 2x + 6
Q(x) = 5x4 + 19x2 + 4x3 - ( - 6x ) - 12 - x2 - ( - 1 )
= 5x4 + 19x2 + 4x3 + 6x - 12 - x2 + 1
= 5x4 + 4x3 + 18x2 + 6x + 1
b, P(x) + Q(x) = 2x4 + 4x3 - 3x2 + 2x + 6 + 5x4 + 4x3 + 18x2 + 6x + 1
= 7x4 + 8x3 + 15x2 + 8x + 7
c, P(x) - Q(x) = 2x4 + 4x3 - 3x2 + 2x + 6 - ( 5x4 + 4x3 + 18x2 + 6x + 1 )
= 2x4 + 4x3 - 3x2 + 2x + 6 - 5x4 - 4x3 - 18x2 - 6x - 1
= - 3x4 - 21x3 - 4x + 5
a) P(x) =5x3 - 5x + 9 +x
=5x3 + (-5x + x) + 9
= 5x3 - 4x + 9
Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)
\(=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)
\(=-x^3+x^2-x+1\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)
\(=2x^2+3\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)
\(=2x^3+2x+1\)
c) \(M\left(x\right)=2x^2+3>0\)vì \(2x^2\ge0,3>0\)do đó đa thức \(M\left(x\right)\)vô nghiệm.
Nhìn tưởng đề sai ... nhưng nó có sai đâu :v
a, Ta có :
\(P\left(x\right)=5x^3-3x+2-x-x^2+\frac{3}{5}x+3=5x^3-\frac{17}{5}x+5-x^2\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3+4x-5-x^2\)
b, Ta có :
\(M\left(x\right)=5x^3-\frac{17}{5}x+5-x^2-5x^3+4x-5-x^2=\frac{3}{5}x-2x^2\)
Tương tự vs N(x)
c, Ta có : \(M\left(x\right)=\frac{3}{5}x-2x^2=0\)
\(\Leftrightarrow x\left(\frac{3}{5}-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{3}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{10}\end{cases}}}\)
`a,`
`P(x)=5x^3 - 3x+7 -x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
`b,`
`-5x^3+2x-3+2x-x^2-2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
`b,`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
`N(x)=(5x^3-4x+7)-(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7+5x^3+x^2-4x+5`
`= (5x^3+5x^3)+x^2+(-4x-4x)+(7+5)`
`= 10x^3+x^2-8x+12.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
N(x)=5x^3-4x+7+5x^3+x^2-4x+5=10x^3+x^2-8x+12