Bài 6: Với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) đều là hàm số bậc nhất đối với x vì hệ số của x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại một điểm trên trục tung, chỉ khi tung độ góc của chúng bằng nhau: 3 + m = 5 – m => m = 1.

Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.

23 tháng 4 2017

Các hàm số y = 2x + (3 +m) và y = 3x + (5-m) đều là hàm số bật nhất đối với x và hệ số x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại một điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại cùng một điểm trên trục tung, khi và chỉ khi tung độ gốc của chúng bằng nhau, nghĩa là:
3 + m = 5 – m ⇔ m = 1
Vậy khi m =1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.

DD
21 tháng 10 2021

\(y=3x+m\)(*) 

1) a) Đồ thị hàm số (*) đi qua \(A\left(-1,3\right)\)nên \(3=3.\left(-1\right)+m\Leftrightarrow m=6\).

b)  Đồ thị hàm số (*) đi qua \(B\left(-2,5\right)\)nên \(5=3.\left(-2\right)+m\Leftrightarrow m=11\).

2) Đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ \(3x+m=0\Leftrightarrow x=-\frac{m}{3}\)

Suy ra \(-\frac{m}{3}=-3\Leftrightarrow m=9\).

3) Đồ thị hàm số (*) cắt trục tung tại điểm có tung độ \(y=3.0+m=m\)

suy ra \(m=-5\).

26 tháng 4 2017

Từ giả thiết ta gọi tọa độ điểm cắt nhau A(a;0)

Thay vào 2 hàm số ta có hệ:

\(\left\{{}\begin{matrix}12a+5-m=0\\3a+3+m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15a+8=0\\m=-3a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{15}\\m=-\dfrac{7}{5}\end{matrix}\right.\)

Vậy \(m=-\dfrac{7}{5}\)

26 tháng 4 2017

ây em nhầm trên trục hoành,giải lại:

Từ giả thiết ta gọi tọa độ điểm cắt nhau A(0;a)

Thay vào 2 hàm số ta có:

y=5-m và y=3+m

=>5-m=3+m

<=> 2m =2

<=>m=1

Vậy m=1

23 tháng 7 2017

Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:

    hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m

    hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m

Vì cùng là tung độ của giao điểm nên:

    3 + m = 5 – m => m = 1

Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.

(Lưu ý: Điểm trên trục tung có hoành độ là 0)

15 tháng 1 2017

Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:

    hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m

    hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m

Vì cùng là tung độ của giao điểm nên:

    3 + m = 5 – m => m = 1

Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.

(Lưu ý: Điểm trên trục tung có hoành độ là 0)

3 tháng 2 2018

phương trình hoành độ giao điểm là
2x+(3+m)=3x+(5-m)
<=>2x+3+m=3x+5-m(1)
thay x=0 ta đk
(1)<=>3+m=5-m
<=>2m=2
<=>m=1

NV
11 tháng 8 2021

Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)

Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)

Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)

Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)

a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:

\(k=-k+4\Rightarrow x=2\)

b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:

\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)

16 tháng 11 2021

vẽ đồ thị hàm số y=/x/+4x . Với giá trị nào của k thì hàm số y=k cắt đồ thị hàm số trên tại hai điểm phân biệt