Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
a) \(A=\frac{6n-1}{3n+1}=\frac{2\left(3n+1\right)-3}{3n+1}=2-\frac{3}{3n+1}\)
Để A đạt GTNN thì \(\frac{3}{3n-1}\) phải đạt giá trị lớn nhất
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n-1}>0\\3n-1\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3n-1>0\\3n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n>\frac{1}{3}\\n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
Mà n thuộc Z => n = 1
\(\Rightarrow A_{min}=\frac{6.1-1}{3.1+1}=\frac{5}{4}\Leftrightarrow n=1\)
b) Điều kiện để A là phân số:
\(\hept{\begin{cases}6n-1\inℤ\\3n+1\inℤ\\3n+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}n\inℤ\\n\inℤ\\n\ne-\frac{1}{3}\end{cases}}}\)
Mà n thuộc Z => n luôn ≠ \(-\frac{1}{3}\)
Vậy để A là phân số thì n thuộc Z
c) A có giá trị nguyên <=> 6n - 1 chia hết cho 3n + 1
Có: 3n + 1 chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1
=> 6n + 2 - (6n - 1) chia hết cho 3n + 1
=> 6n + 2 - 6n + 1 chia hết cho 3n + 1
=> 3 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(3) = {-3; -1; 1; 3}
=> 3n thuộc {-4; -2; 0; 2}
Mà n thuộc Z => 3n chia hết cho 3
=> 3n = 0
=> n = 0
Vậy để A thuộc Z thì n = 0
Sửa lại:... :v
Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1
= -x3 + x2 - x + 1
=> M(x) = 2x2 + 3
N(x) = 2x3 + 2x + 1
Câu c chỉ cần thay số 5 thành số 3 là được nhé!
a. P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
= (2x3 - x3) + x2 + (3x - 2x) + 2
= x3 + x2 + x + 2
Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1
= -x3 + x2 - x + 3
b. M(x) = P(x) + Q(x)
= x3 + x2 + x + 2 - x3 + x2 - x + 3
= (x3 - x3) + (x2 + x2) + (x - x) + (2 + 3)
= 2x2 + 5
N(x) = P(x) - Q(x)
= x3 + x2 + x + 2 - (- x3 + x2 - x + 3)
= x3 + x2 + x + 2 + x3 - x2 + x - 3
= (x3 + x3) + (x2 - x2) + (x + x) + (2 - 3)
= 2x3 + 2x - 1
c. Ta có: 2x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2x2 + 5 > 0
\(\Rightarrow\) Đa thức M(x) vô nghiệm (đpcm)
a) P(x) = 2x4 + x3 - 2x - 5x3 + 2x2 + x + 1
= 2x4 + (x3 - 5x3) + 2x2 + (x - 2x) + 1
= 2x4 - 4x3 + 2x2 - x + 1
b) P(0) = 2 . 04 - 4 . 03 + 2 . 02 - 0 + 1 = 1
P(1) = 2 . 14 - 4 . 13 + 2 . 12 - 1 + 1 = 0
c) P(-1) = 2 . (-1)4 - 4 . (-1)3 + 2 . (-1)2 - (-1) + 1 = 10
=> x = -1 không là nghiệm của đa thức P(x)
Ta có: P(1) = 0
=> x = 1 là nghiệm của đa thức P(x)
M P N D E H K
a) Xét tam giác PMD và tam giác EMD, ta có :
PMD = EMD ( gt )
MD chung
MP = ME ( gt )
=> Tam giác PMD bằng Tam giác EMD ( c . g . c )
b) Xét tam giác MPK và tam giác MEK, ta có :
PMD = EMD ( gt )
MK chung
MP = ME ( gt )
=> Tam giác MPK = Tam giác MEK ( c . g .c )
=> KP = KE ( 1 )
=> MKE = MKP = 900 ( 2 )
Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE
c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }
Xét tam giác MHD và tam giác MND, ta có :
HMD = NMD ( gt )
MD chung
MDN = MDH ( gt )
=> Tam giác MHD bằng tam giác MND ( g . c .g )
=> HD = DN
d)
a)Xét \(\Delta ABI\)vuông tại A và \(\Delta KBI\)vuông tại K ,có:
\(\widehat{ABI}=\widehat{KBI}\)(do BI là phân giác của \(\widehat{ABC}\))
\(BI:chung\)
\(\Rightarrow\Delta ABI=\Delta KBI\left(ch.gn\right)\)
b)Vì \(\Delta ABI=\Delta KBI\left(ch.gn\right)\)
\(\Rightarrow\hept{\begin{cases}AB=KB\\AI=BI\end{cases}}\)(2 cạnh tương ứng)
\(\Rightarrow B,I\)thuộc đường trung trực của AK
hay BI là đường trung trực của AK
c)Vì BI là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\)\(\widehat{ABI}=\widehat{KBI}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0=\widehat{ACB}\)(do \(\Delta ABC\)vuông tại A)
\(\Rightarrow\Delta BIC\)cân tại I
mà IK là đường cao
\(\Rightarrow IK\)là đường trung tuyến của \(\Delta BIC\)
\(\Rightarrowđpcm\)
//Sorry bạn nha .Hôm qua chỗ mình mưa to quá lại còn có sấm sét nữa nên mình không giải tiếp được cho bạn .
c)Vì \(\Delta BIC\)cân tại I nên IB=IC
Xét \(\Delta ABI\)vuông tại A ,có:
\(IB\)là cạnh huyền
\(\Rightarrow AB< IB=IC\)
d)Vì \(\Delta ABC\)vuông tại A \(\Rightarrow AB\perp AC\)
Xét \(\Delta BIC\),có:
BA,IK,CF là các đường cao
\(\Rightarrow BA,IK,CF\)đồng quy tại trực tâm của \(\Delta BIC\)
`a,`
`Q(x)=`\(-3x^4+4x^3+2x^2+\)\(\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
`=(-3x^4-2x^4+8x^4)+(4x^3-4x^3)+2x^2+(-3x+3x)+(2/3+1)`
`= 3x^4+2x^2+5/3`
`b,`
Bậc của đa thức: `4`
Hệ số cao nhất: `3`
Hệ số tự do: `5/3`
`c,`
Đặt `3x^4+2x^2+5/3=0`
Vì \(\left\{{}\begin{matrix}x^4\ge0\rightarrow3x^4\ge0\\x^2\ge0\rightarrow2x^2\ge0\end{matrix}\right.\)
`-> 3x^4+2x^2+5/3`\(>0\)
`->` Đa thức `Q(x)` vô nghiệm.
`@`\(\text{dn inactive.}\)