Cho tam giác ABC vuông tại A, đường cao AH. Vẽ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

so do BAC la :........... viet vao cho cham

ung ho nha

10 tháng 3 2016

mik chưa học

13 tháng 3 2017

à , ra 210

10 tháng 3 2016

GTNN cua bieu thuc A la A(min) = 3

22 tháng 3 2016

emmmm , mới hok lp 5 à , emmmmm ko biết làm bài này , sory

22 tháng 3 2016

ai fan mtp kết bạn nha

ai xem luật nhân quả thì kết bạn nha

chơi truy kích kết bạn nha

22 tháng 11 2016

\(\sqrt{25-x^2}=a\)

\(\sqrt{15-x^2}=b\)

a^2-b^2=10

(a-b)(a+b)=10

(a-b)=2

(a+b)=10/2=5

29 tháng 7 2020

3, Áp dụng BĐT Cauchy Schwarz dạng cộng mẫu thức ta có :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Vậy ta có điều phải chứng minh

29 tháng 7 2020

2 b 

\(bđt< =>a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(< =>2abcd\le a^2d^2+b^2c^2\)

\(< =>a^2b^2+b^2c^2-2abcd\ge0\)

\(< =>\left(ab-cd\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{c}{d}\)

Vậy ta đã hoàn tất chứng minh