Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)
=> MinN đạt được bằng 2008 khi
\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)
Thay vào M ,ta có
\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)
b) Với x , y dương , ta được ngay ĐPCM
Với x âm , y âm , ta cũng được ĐPCM
Vậy nên xét trường hợp x,y trái dấu
\(2x^4y^2\ge0\)
\(7x^3y^5\le0\)
\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)
c)
\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{25}=\dfrac{10x^2-y^2}{10\cdot4-25}=\dfrac{x^2+y^2}{4+25}\\ \Leftrightarrow A=\dfrac{40-25}{29}=\dfrac{15}{29}\)