Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x_1=5y_1\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)
Vậy \(x_1=15;y_1=6\)
\(b,\) Ta có: \(x_1.y_1=x_2.y_2\)
Mà: \(x_1=2x_2;y_210\Rightarrow2x_2y_1=x_2.10\) hay \(y_1=\frac{10x_2}{2x_2}=5\)
Vậy \(y_1=5\)
Giải: a) Ta có: x và y là 2 đại lượng tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}\) => \(x_1=14.\frac{-3}{4}\) => \(x_1=-\frac{21}{2}\)
b) Ta có: x và y là 2 đại tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{y_1}=\frac{-4}{3}\) => \(\frac{x_1}{-4}=\frac{y_1}{3}\) và \(y_1-x_1=-2\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3+4}=-\frac{2}{7}\)
=> \(\hept{\begin{cases}\frac{x_1}{-4}=-\frac{2}{7}\\\frac{y_1}{3}=-\frac{2}{7}\end{cases}}\) => \(\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_3=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)
Vậy ...
a) Vì x và y là 2 đại lượng tỉ lệ nghịch. Hệ số tỉ lệ x và y : \(6.\left(-4\right)=-24\)
b) Vì hệ số tỉ lệ là \(-24\) nên công thức liên hệ x và y là \(y=\frac{-24}{x}\) hay \(xy=24\)
c) \(y=2\frac{2}{5}=\frac{12}{5}=\frac{-24}{x}\Leftrightarrow12x=\left(-24\right).5=-120\Leftrightarrow x=-10\)
\(y=\frac{-3}{4}=\frac{-24}{x}\Leftrightarrow\left(-24\right).4=-96=\left(-3\right)x\Leftrightarrow x=\left(-96\right)\div\left(-3\right)=32\)