Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 ~ (gần bằng) 2^2.322
5^891 ~ (2^2.322)^891 ~ 2^2068
vì 2^2004 < 2^2068 => 2^2004 < 5^891
a) Ta có : 2^300=2^3.100=8^100
3^200=3^2.100=9^100
Ta thấy 8^100<9^100
=>2^300<3^200
b)Ta có:54^4=(2.3^3)^4=2^4.3^12
21^12=(3.7)^12=3^12.7^17
Ta thấy 3^12=3^12
2^4<7^12
Do đó 3^12.2^4<3^12.7^13
Hay 54^4<21^12
c) Ta có 5^100=5^100
2^200=(2^2)^100=4^100
Ta thấy 5^100>4^100
Do đó 5^100>2^200
d)Ta có 10^20=(10^2)^10=20^10
Ta thấy 20^10<40^10
Hay 10^20<40^10
A = 1 + 2 + 22 + 23 + 24 + ... + 22004
2A = 2 + 22 + 23 + 24 + 25 + ... + 22005
2A - A = 22005 - 1
A = 22005 - 1 = B
a ) Ta có : \(9^{20}\)= \(\left(3^2\right)^{10}\)= \(3^{20}\)
\(27^{13}\)= \(\left(3^3\right)^{13}\)= \(3^{39}\)
Vì 39 > 20 => 9^ 20 < 27 ^ 13
Phần b bạn vào câu hỏi tương tự. Nhớ tích đúng cho tớ
a)A=3^0+3^1+3^2+3^3+...+3^2012
A=1+3+3^2+3^3+..+3^2012
3A=3+3^2+3^3+3^4+..+3^2013
3A-A=3+3^2+3^3+3^4+..+3^2013-1-3-3^2-3^3-...-3^2012
2A=3^2013-1
A=\(\frac{3^{2013}-1}{2}\)
B=3^2013
=> A>B
b) A=1+5+5^2+5^3+..+5^99+5^100
5A=5+5^2+5^3+5^4+...+5^100+5^101
5A-A=5+5^2+5^3+5^4+..+5^100+5^101-1-5-5^2-5^3-..-5^99-5^100
4A=5^101-1
A=\(\frac{5^{101}-1}{4}\)
B=5^101/4
=> A<B
\(2^{2004}\)
\(2^{2004}\)