K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

Sửa đề: Chứng mình chia hết 24

Tách: 24=8.3

A=102012+102011+102010+102009+8A=102012+102011+102010+102009+8

A=10...08A=10...083 (1)

A=10...008A=10...008⋮8 (Vì: 0088) (2)

Từ (1) và (2) ⇒A24 Vì: (3,8)

⇒đpcm

21 tháng 2 2021

tham khảo

https://olm.vn/hoi-dap/detail/48844794829.html

\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)

10^2012+10>10^2011+10

=>9/10^2012+10<9/10^2011+10

=>-9/10^2012+10>-9/10^2011+10

=>A>B

28 tháng 10 2016

Ta thấy: \(A=4^4+44^{44}+444^{444}+4444^{4444}+2007\)

             \(=4^4+44^{44}+444^{444}+4444^{4444}+4.501+3\)

              \(=4.k+3\)

Vì số chính phương không thể có dạng \(4k+3\)nên A không phải số chính phương
 

28 tháng 10 2016

mẹ kiếp tự ra rồi tự giải

biết rồi đăng lên chi zậy

Ta có : \(\sqrt{a^2}=a\)

\(\Rightarrow\sqrt{a}\ne a\)

\(\sqrt{a}\)vô tỉ

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

22 tháng 12 2016

Mình ko nhớ câu a) 2004000 

Nhắc lại lý thuyết: 
1. Trong khai triển số chính phương thành tích các thừa số nguyên tố mỗi ước nguyên tố được nâng lên lũy thừa chẵn. 
CM: n = p1^r1 * p2^r2 *... * pk^rk => n² = p1^(2r1) * p2^(2r2) * ... * pk^(2rk) 
2. Kết luận 1 ▲: Số chính phương chia hết cho p^(2k + 1) thì chia hết cho p^(2k + 2) 
CM: n² chia hết cho p^(2k + 1) => p là ước của n => n² = a*p^(2m) (do 1) => 2m > 2k + 1 (không có 2m = 2k + 1 vì số chẵn không thể bằng số lẻ. Không thể có 2m < 2k + 1 vì lúc đó n² không chia hết cho p^(2k + 1)) 
=> 2m ≥ 2k + 2 => n² chia hết cho p^(2k + 2) 
3. Kết luận 2 ♦: Nếu số n chia hết cho p^(2k + 1) nhưng không chia hết cho p^(2k + 2) thì không là số chính phương (vì nếu chính phương thì từ 2 => n chia hết cho p^(2k + 2), mâu thuẫn) 

4. Số chính phương lẻ là bình phương của số lẻ nên chia cho 4 dư 1 ((2k + 1)² = 4(k² + k) + 1) 
Kết luận: số lẻ chia cho 4 dư 3 không thể là số chính phương ♥ 

Trong các phát biểu trên p1, ..., pk, p là số nguyên tố, m và k nguyên 
--------------- 

b) n = (abcabc) = (abc) * 1000 + (abc) = (abc) * 1001 = (abc) * 7 * 11 * 13 
Nếu n chính phương thì n phải chia hết cho 7², 11², 13² (do ▲) => n chia hết cho 7² * 11² * 13² => (abc) chia hết cho 7*11*13 = 1001, là điều không thể. Vậy n không chính phương. 

c) n = (abba) = 1001a + 110b = 11*(143a + 10b) = 11² * (8a + b) + 11 * (3a - b) 
Nếu n chính phương thì n phải chia hết cho 11² (do chia hết cho 11), tức 3a - b phải chia hết cho 11 

Với a = 2, 3, 7, 8 dễ thấy n không chính phương (số chính phương chỉ tận cùng bằng, 0, 1, 4, 5, 6, 9) 

Với a = 1 đk cần để n chính phương là 3a - b = 3 - b phải chia hết cho 11, tức b = 3. Nhưng 1331 = 11³ không là số chính phương (do ♦ nhưng cũng do ♥ vì chia cho 4 dư 3 do 31 chia cho 4 dư 3). 

Với a = 4 đk cần để n chính phương là 3a - b = 12 - b phải chia hết cho 11, tức b = 1, nhưng số 4114 không là số chính phương do chia hết cho 2 nhưng không chia hết cho 2² (do ♦) vì 14 không chia hết cho 4 

Với a = 5 đk cần để n chính phương là 3a - b = 15 - b phải chia hết cho 11, tức b = 4, nhưng số 5445 không chính phương vì số chính phương tận cùng bằng 5 thì phải tận cùng bằng 25 

Với a = 6 đk cần để n chính phương là 3a - b = 18 - b phải chia hết cho 11, tức b = 7, nhưng số 6776 = 6800 - 24 = 17 * 4² *25 - 3*2³ do chia hết cho 2³ nhưng không chia hết cho 2^4 nên không chính phương (do ♦) 

Với a = 9 đk cần để n chính phương là 3a - b = 27 - b phải chia hết cho 11, tức b = 5, nhưng số 9559 không là số chính phương do chia chia cho 4 dư 3 (do ♥) vì 59 chia cho 4 dư 3 

=> số (abba) với a > 0 không là số chính phương.