Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)
Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
Mình gửi đề ạ, chứ sao trên đó nó không hiện đề
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\left(1\right)\\x^2-y^3+xy=1\left(2\right)\end{cases}}\)
(2) <=> \(3x^2-3y^3+3xy=3\left(3\right)\)
Lấy (3) - (1):
\(x^2-2y^3+xy-2xy^2=0\)
<=> \(x\left(x+y\right)-2y^2\left(x+y\right)=0\)
<=> \(\left(x+y\right)\left(x-2y^2\right)=0\)
<=> \(\orbr{\begin{cases}x=-y\\x=2y^2\ge0\left(loại\right)\end{cases}}\)
Với x = -y thế vào (2) ta có: \(y^2-y^3-y^2=1\Leftrightarrow-y^3=1\Leftrightarrow y=-1\)
khi đó: x = 1
Vậy ( 1; -1 ) là nghiệm hệ phương trình.