Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-5|=3x+12+2x-1=5x+11
TH1: x>=5
=>x-5=5x+11
=>-4x=16
=>x=-4(loại)
TH2: x<5
=>5-x=5x+11
=>-6x=-6
=>x=1(nhận)
b: =>|x+2|-|x-1|=x+5-2x=-x+5
TH1: x<-2
=>-x-2-(1-x)=-x+5
=>-x-2-1+x=-x+5
=>x-3=5
=>x=8(nhận)
Th2: -2<=x<1
=>x+2-1+x=-x+5
=>2x+1=-x+5
=>3x=4
=>x=4/3(loại)
TH3: x>=1
=>-x+5=x+2+1-x=3
=>-x=-2
=>x=2(nhận)
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)
\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)
\(5x^2-5x^2-5x=3\)
\(-5x=3\)
\(x=\frac{-3}{5}\)
tự ghi dấu suy ra ở đằng trước nhé
b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)
nên chỉ cần giải: \(6x^2-10x-3x+21=3\)
\(\Leftrightarrow6x^2-13x+21=3\)
\(\Leftrightarrow6x^2-13x+18=0\)
\(\Rightarrow\)pt vô nghiệm
a) = (x + 1)^3 - 27z^3 = (x+1 - 3z)( (x+1)^2 + 3z(x+1) + 9z^2 )
b)= x^2 + x+ 3x + 3 = x (x+1) +3 (x+1) =(x+3)(x+1)
c) = 2x^2 - 2x + 5x - 5 = 2x(x-1) + 5(x-1) = (2x+5)(x-1)
d) = (a^2 + 1 - 2a)(a^2 +2a +1) = (a-1)^2 * (a+1)^2
e) = x^3 ( x-1) - (x^2 - 1) = x^3 ( x-1) - (x+1)(x-1) = (x^3 -x -1)(x-1)
(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)
20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1
10x2−19x−33=010x2−19x−33=0
(10x+11)(x−3)=0
chỉ bt lm con b thoy
..army,,,,,,,,,,
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2\)
\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)
\(\Leftrightarrow20x^2-16x-33=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
a) ( a + b + c ) 2 + ( a + b - c ) 2 -2 x ( a+b) 2
2a+2b+2x+2a+2b-2c-2.(2a+2b)
2a+2b+2c+2a+2b-2c-4a-4b
4a+4b-4a-4b=0
b) 2x.( 2x -1 ) 2 -3x.( x+3 )( x-3) - 4x.(x+1).2
2x.(4x-2)-3x2-9x-3x2+9x-4x(2x+2)
8x2-4x-3x2-9x-3x2+9x-8x2-8x
-12x-3x2
c) ( a-b+c).2 -(b-c).2 + 2ab - 2ac
2a-2b+2c-2b+2c+2ab-2ac
2a-4b+4c+2ab-2ac
d) (3x+1).2 - 2(3x+1)( 3x+5 )+(3x+5).2
6x+2-6x-2-6x-10+6x+10=0
mik nhớ bài này mik có lm ròi mà?
đây này: