K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

là sao

CÓ PHẢI LỚP 1 KO VẬY SAO MÀ KHÓ THẾ!!!!!

theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC 

BN=AB.BCAC+BC  .tương tự suy ra CM=AC.BCAB+BC 

giả sử  AB≥AC⇒BN≥CMtheo kết quả vừa tính được

có AB≥AC⇒^B≤^C⇔{

^B1≤^C1
^B2≤^C2

chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23

mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN

⇒{

BN≥CM
BN≤CM

⇒BN=CM⇒AB=AC⇒tam giác ABC cân

trường hợp AB≤AC làm tương tự

22 tháng 5 2019

sai ngay dòng đầu 

\(x^2=0\Leftrightarrow\frac{x}{a}=\frac{0}{x}\)

vì khi x2=0 <=> x=0, mà x nằm ở mẫu thức => vô lí  

22 tháng 5 2019

Sai ở ngay đầu dòng :

Do x2 = 0 => x = 0 

Mà x nằm ở mẫu -> Vô lý.

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

Quy ước gen : A - thân cao > a - thân thấp P : Aa x Aa  -> F1 . Cần phải lấy ít nhất bao nhiêu hạt ở F1 để trong số hạt đã lấy xác suất có ít nhất một hạt mang kiểu gen aa lớn hơn 80% . Bài làm : Aa x Aa => 3/4 A_ : 1/4 aa  gọi n là số hạt ít nhất phải lấy ra (ĐK: n nguyên dương ) XS =...
Đọc tiếp

Quy ước gen : A - thân cao > a - thân thấp 

P : Aa x Aa  -> F1 . Cần phải lấy ít nhất bao nhiêu hạt ở F1 để trong số hạt đã lấy xác suất có ít nhất một hạt mang kiểu gen aa lớn hơn 80% . 

Bài làm : Aa x Aa => 3/4 A_ : 1/4 aa 

 gọi n là số hạt ít nhất phải lấy ra (ĐK: n nguyên dương ) 

XS =  \(C^1_n.\left(\frac{3}{4}\right)^n+C^2_n.\left(\frac{3}{4}\right)^{n-1}.\left(\frac{1}{4}\right)+C^3_n.\left(\frac{3}{4}\right)^{n-2}.\left(\frac{1}{4}\right)^2+...+C^n_n.\left(\frac{1}{4}\right)^n\)

\(=\left(\frac{1}{4}\right)^n.\left(4^n-3^n\right)=1-\left(\frac{3}{4}\right)^n\) 

giả thiết => \(1-\left(\frac{3}{4}\right)^n>80\%\)<=> \(\left(\frac{3}{4}\right)^n< 0.2\)<=> \(n>log^{0.2}_{\frac{3}{4}}\)mà n nhỏ nhất => n = 6 

--------------------------------

tương tự nếu bài toán yc: Xác suất lấy n hạt ở F1 để trong số hạt đã lấycó ít nhất hai hạt mang kiểu gen aa . 

Như trên ta được XS = \(\left(\frac{1}{4}\right)^n.\left(4^n-3^n-C^1_n.3^{n-1}\right)\)

------------------------------------------- 

Công thức tổng quát :  xác suất lấy n hạt ở F1 để trong số hạt đã lấy ra có ít nhất m hạt mang kiểu gen aa là : 

XS = \(\left(\frac{1}{4}\right)^n.\left[4^n-\left(C^0_n.3^n+C^1_n.3^{n-1}+...+C^{m-1}_n.3^{n-m+1}\right)\right]\) (ĐK:\(1\le m< n\)

2
30 tháng 10 2016

đó mà là toán lớp 1 sỉu luôn

30 tháng 10 2016

toán như thế mà gọi là lớp 1 thì xỉu

26 tháng 11 2021

toán lớp 1 đây á

26 tháng 11 2021

lop1 :))))))))

bi

28 tháng 10 2018

toán lớp 1 gì mà ảo diệu quá...

28 tháng 10 2018

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)

\(=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM