Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\frac{3x-4}{x-2}-1>0\Leftrightarrow\frac{2x-2}{x-2}>0\Rightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
b/
\(\frac{2x-5}{2-x}+1\le0\Rightarrow\frac{x-3}{2-x}\le0\Rightarrow\left[{}\begin{matrix}x\ge3\\x< 2\end{matrix}\right.\)
c/
\(\frac{x^2+x-3}{x^2-4}-1\le0\Rightarrow\frac{x+1}{x^2-4}\le0\Rightarrow\frac{x+1}{\left(x-2\right)\left(x+2\right)}\le0\Rightarrow\left[{}\begin{matrix}x< -2\\-1\le x< 2\end{matrix}\right.\)
d/
\(\frac{4x^2-8x+6+x^2-x-6}{2\left(x^2-x-6\right)}>0\Rightarrow\frac{x\left(5x-9\right)}{2\left(x+2\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\0< x< \frac{9}{5}\\x< -2\end{matrix}\right.\)
e/
\(\frac{x^2+3x+2}{2x+3}-\frac{2x-5}{4}\ge0\Rightarrow\frac{4x^2+12x+8-\left(2x-5\right)\left(2x+3\right)}{4\left(2x+3\right)}\ge0\)
\(\Rightarrow\frac{28x+23}{4\left(2x+3\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{23}{28}\\x< -\frac{3}{2}\end{matrix}\right.\)
1.
\(\frac{x^2+2x+5}{x+4}-\left(x-3\right)\ge0\)
\(\Leftrightarrow\frac{x^2+2x+5-\left(x-3\right)\left(x+4\right)}{x+4}\ge0\)
\(\Leftrightarrow\frac{x+17}{x+4}\ge0\Rightarrow\left[{}\begin{matrix}x>-4\\x\le-12\end{matrix}\right.\)
2.
\(\frac{x^2-3x-1}{2-x}+x>0\)
\(\Leftrightarrow\frac{x^2-3x-1+x\left(2-x\right)}{2-x}>0\)
\(\Leftrightarrow\frac{-x-1}{2-x}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)
3.
\(\frac{3x-47}{3x-1}-\frac{4x-47}{2x-1}>0\)
\(\Leftrightarrow\frac{\left(3x-47\right)\left(2x-1\right)-\left(4x-47\right)\left(3x-1\right)}{\left(3x-1\right)\left(2x-1\right)}>0\)
\(\Leftrightarrow\frac{-6x\left(x-8\right)}{\left(3x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{3}\\\frac{1}{2}< x< 8\end{matrix}\right.\)
4.
\(\frac{x\left(x+2\right)+9}{x+2}-4\ge0\)
\(\Leftrightarrow\frac{x^2+2x+9-4\left(x+2\right)}{x+2}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x+2}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x+2}\ge0\Rightarrow x>-2\)
5.
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Rightarrow\left[{}\begin{matrix}x\le-6\\1\le x< 2\\2< x< 7\\x=-2\end{matrix}\right.\)
6. Xem lại đề
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
sai vì nó bằng \(\frac{-29}{6}\)
Ta có:
\(-4\frac{1}{3}-\frac{3}{6}=-\frac{26}{6}-\frac{3}{6}=-\frac{23}{6}\ne4\)