K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

So sánh:\(\left(-\frac{1}{2}\right)^{513}\text{ và }\left(-\frac{1}{3}\right)^{315}\)

\(\left(-\frac{1}{2}\right)^{513}=0:\left(-\frac{1}{3}\right)=0\)

\(\Rightarrow\left(-\frac{1}{2}\right)^{513}=\left(-\frac{1}{3}\right)^{315}\).

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

13 tháng 12 2018

Cho mk sửa xíu : ( 1/2)^-1 ; (1/2)^-2

13 tháng 12 2018

(1/2)^-1=2

(1/2)^-2=4

có 2<4

=>(1/2)^-1<(1/2)^-2

11 tháng 7 2017

Cách1:Ta có:\(\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{2}\right)^{40}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{16}\right)^{10}\)

Vậy..................

Cách 2:Ta có:\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)

Vậy......................

11 tháng 7 2017

\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1^{10}}{2^{40}}=\frac{1}{2^{40}}\)

\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{2^{50}}\)

Do 250 > 240 => \(\frac{1}{2^{40}}>\frac{1}{2^{50}}\)

=> \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

9 tháng 7 2016

Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)

Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)

\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)