Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai làm nhanh mik k cho nhé gấp lắm
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A=20002016+20002017=20002016(1+2000)=20002016x2001<20012016x2001=20012017=B
Vây A < B
Ta có : A = 20002016 + 20002017
= 20002016.(1 + 2000)
= 20002016.2001
< 20012016.2001
= 20012017 = B
=> A < B
Vậy A < B
B=20002017+2017 ,A=20002016+20002017
Mà 20002016>2017
=>A>B
bài 1 :
vì x chia hết cho 10 và 22 nên x là BC của 10 và 22 mà x<120
ta có : Ư(10) = { 1;2;5;10 }
Ư(22) = { 1;2;11;22 }
ƯC(10;22) = { 1;2 }
suy ra : x thuộc ( kí hiệu thuộc ) { 1;2 }
Do : \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016}{2017+2018}+\frac{2017}{2017+2018}=\frac{2016+2017}{2017+2018}\)
Vậy : \(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
Ta có:
\(\frac{2016}{2017}>\frac{2017}{2018}\Rightarrow A>\frac{2016}{2018}+\frac{2017}{2018}\Rightarrow A>\frac{2016+2017}{2018}\)
\(\frac{2016+2017}{2017+2018}=\frac{2016+2017}{4035}\)
Vì:\(\frac{2016+2017}{2018}>\frac{2016+2017}{4015}\)
Nên:\(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
\(\frac{2017^{2000}+2001}{2017^{2017}+2001}\)= \(1\frac{2}{2017^{2017}+2001}\)và \(\frac{2017^{2001}-2000}{2017^{2018}-2000}\)=\(1\frac{2}{2017^{2018}-2000}\)
Vì \(\frac{2}{2017^{2017}+2001}\)<\(\frac{2}{2017^{2018}-2000}\)nên B>A
1 o dau vay