Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụ ''2'' ta có
\(\dfrac{n}{n+1}.\dfrac{n+1}{n+3}=\dfrac{n^2+2n+n}{n^2+2n+1}\ge1.\)
Suy ra
\(\dfrac{n}{n+1}\) lớn hơn \(\dfrac{n+1}{n+3}\) \(\in N\)
Mk mới học mong các bạn giúp đỡ
Ta có :
\(\frac{n}{n+3}< \frac{n}{n+2}\)
\(\frac{n+1}{n+2}>\frac{n}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n}{n+2}< \frac{n+1}{n+2}\)
Vậy \(\frac{n}{n+3}< \frac{n+1}{n+2}\)
s<2
bài này hình như mk lm ròi nhg ko nhớ là phải đáp án này ko
nếu sai cho mình xl
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Cách làm này là sao vậy bồ @_@
Sử dụng ''2'' ta có;
\(\frac{n}{n+1}.\frac{n+3}{n+1}=\frac{n^2+2n+n}{n^2+2n+1}\ge1.\)
Suy ra
\(\frac{n}{n+1}\) lớn hơn \(\frac{n+1}{n+3}.\)
P/s; Sao ko ai giúp vậy huhu ToT