K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

A>B 

Tíc đúng cho mình nhaTíc đúng cho mình nha

30 tháng 10 2016

Giải thích giúp mình đi

18 tháng 3 2018

Ta có :

\(A=\frac{10^{2016}+1}{10^{2015}+1}=\frac{\left(10^{2016}+1\right).10}{\left(10^{2015}+1\right).10}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10^{2017}+10}{10^{2016}+10}\)

Vì \(10^{2017}=10^{2017}\)\(10>1\)nên \(10^{2017}+10>10^{2017}+1\)( 1 )

Vì \(10^{2016}=10^{2016}\)và \(10>1\)nên \(10^{2016}+10>10^{2016}+1\)( 2 )

Từ ( 1 ) và ( 2 ) , suy ra : \(\frac{10^{2017}+10}{10^{2016}+10}>\frac{10^{2017}+1}{10^{2016}+1}\)

Vậy \(A>B\)

18 tháng 3 2018

\(B=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10^{2016}+1+9}{10^{2017}+1+9}=\frac{10^{2016}+10}{10^{2017}+10}=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}=\frac{10^{2015}+1}{10^{2016}+1}\)

lm tương tự vs B ta có 

\(A=\frac{10^{2015}+1}{10^{2014}+1}\)

suy ra A>B

4 tháng 3 2016

cách giải 

6 tháng 5 2017

A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)\(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)

B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)\(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B

Vậy A>B

7 tháng 5 2017

Cảm ơn bạn nhìu nhé.

13 tháng 5 2016

\(A=\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}\)

\(A=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

\(B=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10.\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)

\(B=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

Vì 102016+1 < 102017+1

=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)

=>\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)

=>10A > 10B

=>A > B

13 tháng 5 2016

\(B=\frac{10^{2016}+1}{10^{2017}+1}<\frac{10^{2016}+1+9}{10^{2017}+1+9}\)

      \(=\frac{10^{2016}+10}{10^{2017}+10}\)

      \(=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}\)

      \(=\frac{10^{2015}+1}{10^{2016}+1}=A\)

\(\Rightarrow\) B<A

7 tháng 4 2018

Xét  \(A=\frac{10^{2014}+2016}{10^{2015}+2016}\Rightarrow10A=\frac{10^{2015}+20160}{10^{2015}+2016}=\frac{10^{2015}+2016+18144}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\)

Xét \(B=\frac{ 10^{2015}+2016}{10^{2016}+2016}\Rightarrow10B=\frac{10^{2016}+20160}{10^{2016}+2016}=\frac{10^{2016}+2016+18144}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2016}\)

Có \(\frac{18144}{10^{2015}+2016}>\frac{18144}{10^{2016}+2016}\)

\(\Rightarrow10A>10B\Leftrightarrow A>B\)

7 tháng 4 2018

cảm ơn bạn nha

21 tháng 3 2018

cdbvksmtv 8.3 ngay21