Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1 - 7x = 3x - 4
=> -7x - 3x = - 4 - 1
=> - 10x = - 5
=> x = 1/2
vậy_
b, đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
mk chỉ bt lm mấy phần hui à!
d)\(\frac{5}{17}+\frac{-4}{7}-\frac{20}{31}+\frac{12}{17}-\frac{11}{31}\)\(=\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-20}{31}-\frac{11}{31}\right)+\frac{-4}{7}\)
\(=\frac{17}{17}+\frac{-31}{31}+\frac{-4}{7}\)\(=1+\left(-1\right)+\frac{-4}{7}\)\(=0+\frac{-4}{7}\)\(=-\frac{4}{7}\)
e)\(\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{20}{7}-\frac{13}{3}+\frac{13}{23}}\)
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)
\(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)
\(=3.\frac{196}{597}\)
\(=\frac{196}{199}\)
b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)
\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)
\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)
\(=\frac{22}{29}.\)
Chúc bạn học tốt!
a) Ta có : \(31^5< 32^5=\left(2^5\right)^5=2^{25}< 2^{28}=\left(2^4\right)^7=16^7< 17^7\)
\(\Rightarrow31^5< 17^7\)
b) Ta có : \(8^{12}=\left(2^3\right)^{12}=2^{36}>2^{32}=\left(2^4\right)^8=16^8>12^8\)
\(\Rightarrow8^{12}>12^8\)
c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{99}\)
\(A=\frac{1-\frac{1}{99}}{2}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
a) \(31^5< 34^5=2^5.17^5=32.17^5\)
\(17^7=17^2.17^5=289.17^5\)
\(\Rightarrow31^5< 17^7\)
b) \(12^8< 16^8=\left(2^4\right)^8=2^{32}\)
\(8^{12}=\left(2^3\right)^{12}=2^{36}\)
\(\Rightarrow8^{12}>12^8\)
c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{1}{3^{99}}\)
\(\Rightarrow2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\)