Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Ta có: \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\)
mà \(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{3.5}.7^{2.8}=3^{15}.7^{16}\)
Vì \(15< 16\)\(\Rightarrow7^{15}< 7^{16}\)
\(\Rightarrow3^{15}.7^{15}< 3^{15}.7^{16}\)\(\Rightarrow21^{15}< 27^5.49^8\)
a) Ta có : 2711 = (33)11 = 33.11 = 333
818 = (34)8 = 34.8 = 332
Vì 333 > 332 nên 2711 > 818
b) Ta có : 6255 = (54)5 = 54.5 = 520
1257 = (53)7 = 53.7 = 521
Vì 520 < 521 nên 6255 < 1257
c) Ta có : 536 = 53.12 = (53)12 = 12512
1124 = 112.12 = (112)12 = 12112
Vì 12512 > 12112 nên 536 > 1124
d) Ta có : 32n = (32)n = 9n
23n = (23)n = 8n
Vì 9n > 8n nên 32n > 23n
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
Ta có :
\(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Do 9 > 8 => \(9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
Vậy \(3^{2n}>2^{3n}\)
Ta có:
\(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Vì \(9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
_Hok tốt_
!!!
A=2020^10+2/2020^11+2
⇒ 2020A=2020^11+2.2020/2020^11+2
= 1+2.2020−2/2020^11+2
B=2020^11+2/2020^12+2
⇒ 2020B=2020^12+2.2020/2020^12+2
= 1+2.2020−2/2020^12+2
Vì 2020^12+2>2020^11+2
⇒ 2.2020−2/2020^11+2<2.2020−2/2020^12+2
⇒ 2020A<2020B
⇒ A<B
So sánh các biểu thức sau :
a , 523 và 6 . 5 22
b , 7 . 213 và 216
c , 2115 và 275 . 498
d , 339 và 1121
\(3.4^7=3.2^{14}\)
\(8^5=2^{15}=2.2^{14}< 3.2^{14}=3.4^7\)
\(3^{2n}=9^n\)
\(2^{3n}=8^n< 9^n=3^{2n}\)