Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(A=3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\)
\(\Rightarrow3A=3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\)
\(\Rightarrow A+3A=\left(3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\right)+\left(3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\right)\)\(\Rightarrow4A=3^{2013}+1>1\Rightarrow A>\frac{1}{4}\)
Vậy \(A>\frac{1}{4}\)
bạn thik câu 2 đúng k . Oke !
b = 3^2009 . 7^2010 . 13^2011
= 3^2008.3 . 7^2010 .13^2011.13
= (3.13).(3^4)^502 . (7.13)^2010
= 39 . 81^502 . 91 ^2010
Vì số 81^502 . 91^2010 có số tận cùng là 1
=> b có tận cùng là 9
a) \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3=2^3\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=2+1\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\)