K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

so sánh 

ta có 

333444=3334.111=(3334)111

444333=4443.111=(4443)111

So sánh 3334và 4443 ta có 

3334=(3.111)4=34 . 1114=81.1114

4443=(4.111)3=43. 1113=64. 1113

Vì 81.1114>64.1113

Suy ra 333444>444333

5 tháng 8 2016

\(=\frac{\left(2^{31}.3^{16}\right).2^{19}.3^{45}+\left(2^{31}.3^{16}\right).2^{59}}{\left(2^{31}.3^{16}\right).2^{20}.3^{45}+\left(2^{31}.3^{16}\right)}\\ =\frac{\left(2^{31}.3^{16}\right).\left(2^{19}.3^{45}+2^{59}\right)}{\left(2^{31}.3^{16}\right).\left(2^{20}.3^{45}+1\right)}\\ =\frac{2^{19}.3^{45}+2^{59}}{2^{20}.3^{45}+1}\)

\(2^{19}.\frac{3^{45}+2^{40}}{2^{20}.3^{45}+1}\)

4 tháng 8 2016

\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{31}.3^{16}}=\frac{2^{50}.3^{16}+3^{45}+2^{50}+2^{40}.3^{16}}{2^{31}+3^{20}+2^{31}.3^{16}}\)

                                 \(=556758,4881\)

=\(\frac{2^{50}.+2^{90}}{2^{51}+2^{31}}=\frac{2^{19}}{2^{39}}=\frac{1}{1048576}\)

K nha

\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{31}.3^{61}}\)

\(=\frac{3^{61}\left(2^{50}+2^{90}\right)}{3^{61}\left(2^{51}+2^{31}\right)}\)

\(=\frac{2^{50}+2^{90}}{2^{51}+2^{31}}\)

\(=\frac{2^{31}\left(2^{19}+2^{59}\right)}{2^{31}\left(1+2^{20}\right)}\)

\(=\frac{2^{19}+2^{59}}{1+2^{20}}\)

5 tháng 8 2016

= ???????? 

:3

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}.\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}.\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)

19 tháng 5 2019

\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}\)

\(\Leftrightarrow\frac{2^{50}+2^{90}}{2^{50}.2+2^{90}.2}\)

\(\Leftrightarrow\frac{1+1}{2+2}\)

\(\Leftrightarrow\frac{1}{2}\)

P/s: Không chắc nhé! '-'

2 tháng 8 2019

Có gì đó sai sai

6 tháng 7 2017

Ta có : 333^444=(3.111)^444=3^444.111^444

444^333=(4.111)^333=4^333.111^333

Ta lại có : 3^444=(3^4)^111=81^111

4^333=(4^3)^111=64^111

vì 3^444>4^333

mặt khác 111^333<111^444

suy ra 4^333.111^333<3^444.111^444    

                                  vậy 333^444>444^333

21 tháng 10 2018

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)

Do x, y, z \(\ne\)\(\Rightarrow\frac{x+y+z}{y+z+x}=1\)

                          \(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)

Vậy.............

21 tháng 10 2018

Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)

Do đó x, y, z khác 0

Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)

\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)

=> y = 0 hoặc y - z = 0

Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z

Thay x = y = z vào A ta có:

\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)

1 tháng 7 2017

2^60 = (2^6)^10 = 64^10

3^40 = (3^4)^10 = 81^10

Do 64<81 => 64^10 < 81^10 => 2^60 < 3^40

5^2000 và 2^500

Do 5>2 và 200> 500 => 5^2000 > 2^500

64^5 và 16^12

64^5 = (2^6)^5 = 2^30

16^12 = (2^4)12 = 2^48 

Do 30< 48 => 64^5 < 16^2