Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\left(2^{31}.3^{16}\right).2^{19}.3^{45}+\left(2^{31}.3^{16}\right).2^{59}}{\left(2^{31}.3^{16}\right).2^{20}.3^{45}+\left(2^{31}.3^{16}\right)}\\ =\frac{\left(2^{31}.3^{16}\right).\left(2^{19}.3^{45}+2^{59}\right)}{\left(2^{31}.3^{16}\right).\left(2^{20}.3^{45}+1\right)}\\ =\frac{2^{19}.3^{45}+2^{59}}{2^{20}.3^{45}+1}\)
\(2^{19}.\frac{3^{45}+2^{40}}{2^{20}.3^{45}+1}\)
\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{31}.3^{16}}=\frac{2^{50}.3^{16}+3^{45}+2^{50}+2^{40}.3^{16}}{2^{31}+3^{20}+2^{31}.3^{16}}\)
\(=556758,4881\)
=\(\frac{2^{50}.+2^{90}}{2^{51}+2^{31}}=\frac{2^{19}}{2^{39}}=\frac{1}{1048576}\)
K nha
\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{31}.3^{61}}\)
\(=\frac{3^{61}\left(2^{50}+2^{90}\right)}{3^{61}\left(2^{51}+2^{31}\right)}\)
\(=\frac{2^{50}+2^{90}}{2^{51}+2^{31}}\)
\(=\frac{2^{31}\left(2^{19}+2^{59}\right)}{2^{31}\left(1+2^{20}\right)}\)
\(=\frac{2^{19}+2^{59}}{1+2^{20}}\)
So sanh
333^444 va 444^333
12^40 và 2^161
5^217 va119^72
5^300 và 3^453
Giup minh voi minh link cho !!!!
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}\)
\(\Leftrightarrow\frac{2^{50}+2^{90}}{2^{50}.2+2^{90}.2}\)
\(\Leftrightarrow\frac{1+1}{2+2}\)
\(\Leftrightarrow\frac{1}{2}\)
P/s: Không chắc nhé! '-'
Ta có : 333^444=(3.111)^444=3^444.111^444
444^333=(4.111)^333=4^333.111^333
Ta lại có : 3^444=(3^4)^111=81^111
4^333=(4^3)^111=64^111
vì 3^444>4^333
mặt khác 111^333<111^444
suy ra 4^333.111^333<3^444.111^444
vậy 333^444>444^333
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)
Do x, y, z \(\ne\)0 \(\Rightarrow\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)
Vậy.............
Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)
Do đó x, y, z khác 0
Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)
\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)
Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)
=> y = 0 hoặc y - z = 0
Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z
Thay x = y = z vào A ta có:
\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)
2^60 = (2^6)^10 = 64^10
3^40 = (3^4)^10 = 81^10
Do 64<81 => 64^10 < 81^10 => 2^60 < 3^40
5^2000 và 2^500
Do 5>2 và 200> 500 => 5^2000 > 2^500
64^5 và 16^12
64^5 = (2^6)^5 = 2^30
16^12 = (2^4)12 = 2^48
Do 30< 48 => 64^5 < 16^2
so sánh
ta có
333444=3334.111=(3334)111
444333=4443.111=(4443)111
So sánh 3334và 4443 ta có
3334=(3.111)4=34 . 1114=81.1114
4443=(4.111)3=43. 1113=64. 1113
Vì 81.1114>64.1113
Suy ra 333444>444333