Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
mà \(9^{100}>8^{100}\Rightarrow2^{300}< 3^{200}\)
a, ta có, 2300= 23.100=(23)100=8100
3200=32.100=(32)100=9100
suy ra 8100<9100= 2300<3200
b,sorry
a)3^200=3^2.100=9^100
2^300=2^3.100=8^100
Suy ra 3^200>2^300
b)125^5=(5^3)^5=5^15
25^7=(5^2)7=5^14
Suy ra 125^5>25^7
c)9^20=(3^2)^20=3^40
27^13=(3^3)13=3^39
Suy ra 9^20>27^13
d)3^54=3^6.9=(3^6)^27=729^9
2^81=2^9.9=512^9
Suy ra 3^54>2^81
e)10^30=10^3.10=1000^10
2^100=2^10.10=1024^10
Suy ra 10^30<2^100
f)5^40=5^4.10=625^10
Suy ra 5^40>620^10
a) 3500và 7300
3500 = (35)100 = 243100
7300=(73)100 =343 100
độ 243 <343 nên => 243100<343100
vậy 3500 <343100
b) 275 = 2433
tic nhá
ta có : \(9^{200}=9^{2.100}=\left(9^2\right)^{100}=81^{100}\)
vì \(81< 99\Rightarrow81^{100}< 99^{100}\)
\(\Rightarrow9^{200}< 99^{100}\)
có 32n = (32)n = 9n
có 23n = (23)n = 8n
Vì 8<9 nên 8n<9n hay 23n < 32n
+ Với n = 0 thì 32n = 32.0 = 30 = 1
23n = 23.0 = 20 = 1
Lúc này 32n = 23n
+ Với n khác 0, ta có: 32n = (32)n = 9n
23n = (23)n = 8n
Vì 9n > 8n
=> 32n > 23n
\(a.2^{60}=\left(2^{10}\right)^6=1024^6\)
\(3^{36}=\left(3^6\right)^6=729^6\)
Vì vậy \(2^{60}>3^{36}\)
\(b.10^{18}=\left(10^2\right)^9=100^9\)
\(5^{27}=\left(5^3\right)^9=125^9\)
Vì vậy \(10^{18}< 5^{27}\)
a) 260 và 336
260 = ( 25 )12 = 3212
336 = ( 33 )12 = 2712
\(\Rightarrow\) 3212 > 2712\(\Rightarrow\) 260 > 336
b) 1018 và 527
1018 = ( 102 )9 = 1009
527 = ( 53 )9 = 1259
\(\Rightarrow\) 1009 < 1259 \(\Rightarrow\) 1018 < 527
Ta có:
2300= 23.100= (23)100= 8100
3200= 32.100= (32)100= 9100
Vì 8100< 9100 => 2300 < 3200
Vậy ....
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
vì 8^100<9^100 nên 2^300<3^200