K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

bạn tham khảo cách mình xem sao :

Ta có:

1,(454) =  0,(001) . 454 + 1 = \(\frac{1}{999}.454+1\)\(\frac{454}{999}+1=\frac{1453}{999}\)

1,4(545) = 0,0(001) . 545 + 1,4 = \(\frac{1}{9990}.545+1,4=\frac{109}{1998}+1,4=\frac{14531}{9990}\)

=> 1,(454) < 1,4(545)

18 tháng 8 2021
các cậu ơi cách để nhận điểm là gì
3 tháng 11 2022

16 tháng 8 2017

lấy 1 trừ đi p/s nhé 

15 tháng 7 2015

Bài dễ mà you ko tự suy nghĩ được, đúng là lười suy nghĩ

15 tháng 7 2015

a) 2561=(52)61=52.61=5122

Vì 122>120 nên 5122>5120 hay 2561>5120

b) 1680 = (42)80= 42.80=4160

Vì 160>65 nên 4160>465 hay 1680>465

Mấy câu khác tự làm 

 

21 tháng 1 2018

Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1 

Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)

10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1

Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)

Từ (1) và (2) => 10A < 10B

=> A < B

Tk mk nha

21 tháng 1 2018

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\)\(\frac{10^{10}+1}{10^{11}+1}< 1\)

\(\Rightarrow\)\(A,B< 1\)

Ta có:

\(10^{11}-1>10^{10}+1\)\(10^{12}-1>10^{11}+1\)

\(\Rightarrow A>B\)

Vậy A > B

29 tháng 10 2015

là hợp số

tick cho mình nha

29 tháng 10 2015

hợp số đó nha các bạn 

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)