K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Sửa đề:

Nếu:

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{69^{2015}+1}{69^{2017}+1}< 1\)

\(B< \dfrac{69^{2015}+1+68}{69^{2017}+1+68}\Leftrightarrow B< \dfrac{69^{2015}+69}{69^{2017}+69}\)

\(B< \dfrac{69\left(69^{2014}+1\right)}{69\left(69^{2016}+1\right)}\Leftrightarrow B< \dfrac{69^{2014}+1}{69^{2016}+1}=A\)

\(B< A\)

24 tháng 6 2017

Bạn xem đề có đúng ko đó

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

28 tháng 6 2017

a)\(\dfrac{17}{15}>1;\dfrac{29}{37}< 1\Leftrightarrow\dfrac{17}{15}>\dfrac{29}{37}\)

b) \(\dfrac{13}{17}>\dfrac{13}{18}\Leftrightarrow\dfrac{13}{17}>\dfrac{12}{18}\)

d)\(1-\dfrac{2017}{2018}=\dfrac{1}{2018}\)

\(1-\dfrac{2018}{2019}=\dfrac{1}{2019}\)

\(\dfrac{1}{2018}>\dfrac{1}{2019}\Leftrightarrow\dfrac{2017}{2018}< \dfrac{2018}{2019}\)

e) \(\dfrac{2018}{2017}< 1;\dfrac{2019}{2018}>1\Leftrightarrow\dfrac{2018}{2017}< \dfrac{2019}{2018}\)

10 tháng 3 2017

Ta có :

\(2017A=\dfrac{2017\left(2017^{2015}+1\right)}{2017^{2016}+1}\)

\(=\dfrac{2017^{2016}+2017}{2017^{2016}+1}\)

\(=\dfrac{\left(2017^{2016}+1\right)+2016}{2017^{2016}+1}\)

\(=\dfrac{2017^{2016}+1}{2017^{2016}+1}\) + \(\dfrac{2016}{2017^{2016}+1}\)

\(=1+\dfrac{2016}{2017^{2016}+1}\) (1)

Tương tự :

\(2017B=\dfrac{2017\left(2017^{2014}+1\right)}{2017^{2015}+1}\)

\(=\dfrac{2017^{2015}+2017}{2017^{2015}+1}\)

\(=1+\dfrac{2016}{2017^{2016}+1}\) (2)

Từ (1) và (2) => \(2017A< 2017B\)

=> \(A< B\)

26 tháng 4 2017

\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)

\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)

Vậy...

27 tháng 4 2017

Ta xét hiệu:

\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)

\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)

Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)

=> A-1<B-1

=>A<B

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

1 tháng 5 2017

\(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< 1\)

Ta có :

\(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< \dfrac{2017^{2018}-2+2019}{2017^{2019}-2+2019}=\dfrac{2017^{2018}+2017}{2017^{2019}+2017}=\dfrac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\dfrac{2017^{2017}+1}{2017^{2018}+1}=A\)

Vậy B < A