K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

M=\(\dfrac{10^{100^{ }}+1}{10^{101}+1}\)

M=\(\dfrac{10^{99+1}+1}{10^{100+1}+1}\)

M=\(\dfrac{10^{99}.10+1}{10^{100}.10+1}\)

N=\(\dfrac{10^{99^{ }}+1}{10^{100}+1}\)

=>M lớn hơn N

6 tháng 9 2017

M>N,vì:\(\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{100}}{10^{101}}\)

\(\dfrac{10^{99}+1}{10^{100}+1}=\dfrac{10^{99}}{10^{100}}\)

\(\dfrac{10^{100}}{10^{101}}>\dfrac{10^{99}}{10^{100}}\)

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B

9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)

10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)

2 tháng 4 2018

Trước hết ta hãy so sánh :

\(\dfrac{10^{100}+1}{10^{101}+1}\)với \(\dfrac{10^{100}+1}{10^{102}+1}\)

Ta có: Cả hai phân số trên cùng tử.

\(\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{102}+1}\)

Tiếp đó so sánh : \(\dfrac{10^{101}+1}{10^{102}+1}\)với \(1\)

Ta được: \(\dfrac{10^{101}+1}{10^{102}+1}< 1\)

Ta lại so sánh được:\(\dfrac{10^{100}+1}{10^{102}+1}< 1\) (*)

Từ (*) suy ra \(\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+2}< \dfrac{10^{101}+1}{10^{102}+1}< 1\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+1}\)

Ngoài ra còn một cách như sau:

\(\dfrac{10^{101}+1}{10^{102}+1}=\dfrac{10^{\left(100+1\right)}+1}{10^{\left(101+1\right)}+1}=\dfrac{10}{10}.\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{101}+1}\) hay B > A hay A < B

3 tháng 4 2018

Bài 1:

d)

\(\dfrac{x+5}{95}+\dfrac{x+10}{90}+\dfrac{x+15}{85}+\dfrac{x+20}{80}=-4\)

\(\Leftrightarrow\dfrac{x+5}{95}+1+\dfrac{x+10}{90}+1+\dfrac{x+15}{85}+1+\dfrac{x+20}{80}+1=-4+1+1+1+1\)

\(\Leftrightarrow\dfrac{x+100}{95}+\dfrac{x+100}{90}+\dfrac{x+100}{85}+\dfrac{x+100}{80}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\right)=0\)

\(\Leftrightarrow x+100=0\) ( vì: \(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\ne0\))

\(\Leftrightarrow x=-100\)

3 tháng 5 2018

+> Ta đi chứng minh tính chất \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)

\(\frac{a}{b}>1\Rightarrow a>b\)

\(\Rightarrow ac>bc\) \(\Rightarrow ac+ab>bc+ab\)\(\Rightarrow a\left(b+c\right)>b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(1\right)\)

+> Aps dụng tính chất (1) vào b thức B ta có:

\(B=\frac{100^{10}-1}{100^{10}-3}>\frac{100^{10}-1+2}{100^{10}-3+2}=\frac{100^{10}+1}{100^{10}-1}\)

\(\Rightarrow B>\frac{100^{10}+1}{100^{10}-1}\)

\(\Rightarrow B>A\)

Vậy \(B>A\)

3 tháng 5 2018

hu hu ai trả lời giúp mình với 

19 tháng 2 2019

Ta có :

\(10A=\dfrac{10\left(10^{1990}+1\right)}{10^{1991}+1}=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\left(1\right)\)

\(10B=\dfrac{10\left(10^{1991}+1\right)}{10^{1992}+1}=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\left(2\right)\)

Lại có : \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)

\(\Leftrightarrow10A>10B\Leftrightarrow A>B\)

Vậy...

14 tháng 12 2015

s2 Lắc Lư s2 cko hỏi ôg lp mấy z? 

Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)

                                       \(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)

                                        \(=10^2+\frac{99}{10^{98}-1}\)

        B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)

                                     \(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)

                                       \(=10^2+\frac{99}{10^{99}-1}\)

  Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B

                                     Vậy A > B

13 tháng 10 2018

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\frac{101.102}{2}}{51}\)

\(=101\)