K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Câu 1:

a) 2225 và 3150

         Ta có:2225=(29)25=51225

                  3150=(36)25=72925

       Vì 51225<72925

                 Suy ra: 2225<3150

3 tháng 9 2016

Câu 2:

a)\(25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)

b)\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)

c)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3+\frac{1}{4}:2=3+\frac{1}{8}=\frac{25}{8}\)

Câu 3:

a)\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^2.\left(\frac{1}{3^4}\right)=3^7:3^4=3^3\)

b)\(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)

c)\(3^2.2^5.\left(\frac{2}{3}\right)^2=288.\frac{4}{9}=2^7\)

d)\(\left(\frac{1}{3}\right)^3.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^4.\left(3^2\right)^2=3^4.\left(\frac{1}{3}\right)^4=3^4:3^4=1\)

 

19 tháng 7 2019

bài 2

làm câu B;C nha

B)

\(27^3=\left(3^3\right)^3=3^9\)

\(9^5=\left(3^2\right)^5=3^{10}\)

vì \(10>9\)

\(=>9^5>27^3\)

C)

\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)

vì \(2^{18}< 2^{20}\)

\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)

\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)

19 tháng 7 2019

\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)

\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)

Bài 2:

\(\text{A.Ta có:}\)

\(5^6=\left(5^3\right)^2=125^2\)

\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)

Vì \(125< 128\)

\(\Rightarrow125^2< 128^2\)

\(\Rightarrow5^6< \left(-2\right)^{14}\)

\(\text{B.Ta có:}\)

\(9^5=\left(3^2\right)^5=3^{10}\)

\(27^3=\left(3^3\right)^3=3^9\)

Vì \(9< 10\)

\(\Rightarrow3^9< 3^{10}\)

\(\Rightarrow27^3< 9^5\)

\(\text{C.Ta có:}\)

\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)

Vì \(18< 20\)

\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)

\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)

22 tháng 6 2019

\(5^{45}=5.\left(5^2\right)^{22}=5.25^{22}\) 

\(3^{73}=3^4.\left(3^3\right)^{23}=81.27^{23}\)

\(\Rightarrow5^{45}< 3^{73}\)

22 tháng 6 2019

\(2^{83}=2^2.\left(2^3\right)^{27}=4.8^{27}\)

\(3^{57}=3^3.\left(3^2\right)^{27}=27.9^{27}\)

\(\Rightarrow2^{83}< 3^{57}\)

15 tháng 10 2019

a) \(2x^8:x^6\)

\(=2x^2.\)

\(48^3:12^3\)

\(=\left(48:12\right)^3\)

\(=4^3\)

\(=64.\)

d) \(\left(\frac{2}{3}\right)^2-\left(\frac{3}{4}\right)^2.\left(-1\right)^{2019}\)

\(=\frac{4}{9}-\frac{9}{16}.\left(-1\right)\)

\(=\frac{4}{9}-\left(-\frac{9}{16}\right)\)

\(=\frac{145}{144}.\)

Chúc bạn học tốt!

16 tháng 10 2019

Ths nha

a) A= 120 : {60 : [(32 + 42 ) - 5 ]}

      = 120 : { 60 : [ ( 9 + 16 ) - 5 ] }

      = 120 : { 60 : [ 25 - 5 ] }

      = 120 : { 60 : 20 }

      = 120 : 3

      = 40

b) \(B=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\)

\(B=\frac{1.3}{2.3}+\frac{1.2}{3.2}-\frac{1}{6}\)

\(B=\frac{3}{6}+\frac{2}{6}-\frac{1}{6}\)

\(B=\frac{3+2-1}{6}\)

\(B=\frac{4}{6}=\frac{2}{3}\)

15 tháng 9 2015

b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)

\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)

\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)

\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)

Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)

Ta có: \(\frac{3}{4}A<\frac{3}{4}B\) \(\rightarrow A

15 tháng 9 2015

À thì ra bạn học cùng trường với Nguyễn Âu Hồng Sơn