K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Sửa lại:

Ta có:

\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B

Từ đó A > B

Vậy A > B

8 tháng 1 2017

Có:

\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)

\(\Rightarrow2009A>2009B\)

\(\Rightarrow A>B\)

Vậy A > B

19 tháng 3 2017

D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)

 <\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)

 <\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)

<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)

 <\(\frac{2011^{2012}+1}{2011^{2013}+1}\)

<C

Vậy C>D

19 tháng 3 2017

C>D nhé

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

5 tháng 4 2018

a,ta có:

A=2011^2012-2011^2011

=2011^2011(2011-1)

=2011^2011.2010

và B = 2011^2013-2011^2012

=2011^2012(2011-1)

=2011^2012.2010

Vì 2011^2011<2011^2012 => 2011^2011.2010< 2011^2012.2010

=>A<B

5 tháng 4 2018

a,ta có:

A=2011^2012-2011^2011

=2011^2011(2011-1)

=2011^2011.2010

và B = 2011^2013-2011^2012

=2011^2012(2011-1)

=2011^2012.2010

Vì 2011^2011<2011^2012 => 2011^2011.2010< 2011^2012.2010

=>A<B

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1

19 tháng 4 2016

câu này khó quá mk chịu

21 tháng 2 2017

Tất nhiên là A < B rồi 

25 tháng 4 2018

P=\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2014-1}{2014}+\frac{2015-1}{2015}\)

  =\(1-\frac{1}{2012}+1-\frac{1}{2013}+1-\frac{1}{2014}+1-\frac{1}{2015}\)

  =\(4-\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)\)

VẬY P<4

25 tháng 4 2018

\(\orbr{\begin{cases}\orbr{\begin{cases}\frac{2011}{2012}< 1\\\frac{2012}{2013}< 1\end{cases}}\\\orbr{\begin{cases}\frac{2013}{2014}< 1\\\frac{2014}{2015}< 1\end{cases}}\end{cases}\Rightarrow P< 1+1+1+1=4}\)

3 tháng 3 2019

\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

\(\Rightarrow P>\frac{2012}{2013}+\frac{2012}{2013}+\frac{2012}{2013}\)

\(P>\frac{4036}{2013}>1\)(1)

\(Q=\frac{2010+2011+2012}{2011+2012+2013}=\frac{6033}{6036}< 1\)(2)

\(Q< 1;P>1\Rightarrow P>Q\)

3 tháng 3 2019

Câu hỏi của Son Goku - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài bạn Huy nhé!

5 tháng 7 2017

a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)

Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)

\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)

Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)

Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)

b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)

Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)

Vậy A > B 

Có gì  sai cho sorry

a,

\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)

b,

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)