Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(199^{20}< 200^{20}=200^{15}\cdot200^5=200^{15}\cdot2^5\cdot100^5=B\)(1)
mà \(2^5=32< 10^5\)=> \(B< 200^{15}\cdot10^5\cdot10^{10}=200^{15}\cdot10^{15}=2000^{15}< 2003^{15}\)
Vậy, \(199^{20}< 2003^{15}\).
a)
Ta có: \(81>64\Rightarrow3^4>4^3\Rightarrow\left(3^4\right)^{111}>\left(4^3\right)^{111}\Rightarrow3^{444}>4^{333}\)(1)
Ta lại có \(111^{444}>111^{333}\)(2)
Nhân (1) và (2) vế với vế ta được: \(3^{444}\cdot111^{444}>4^{333}\cdot111^{333}\Rightarrow\left(3\cdot111\right)^{444}>\left(4\cdot111\right)^{333}\)
Hay: \(333^{444}>444^{333}\).
Ta có:
19920 < 20020 = 20015.2005
200315 > 200015 = 20015.1015 = 20015.(103)5 = 20015.10005
Vì 2005 < 10005
=> 20020 < 200015
=> 19920 < 200315
Ta có :
\(199^{20}=\left(199^4\right)^5\)(1)
\(2003^{15}=\left(2003^3\right)^5\)(2)
Từ (1) và (2)
\(\Rightarrow199^4=2003^3\)
Lại có :
\(199^4=1568239201\)(3)
mà \(2003^3=8036054027\)(4)
Từ (3) và (4)
=) 1994 < 20033
Vậy 19920 < 200315
a) ta có
\(\left\{{}\begin{matrix}199^{20}=\left(199^4\right)^5=1568239201^5\\2003^{15}=\left(2003^3\right)^5=80360540276^5\end{matrix}\right.\)
vì 1568239201 < 80360540276 ⇒ 19920<200315
các câu khác làm tương tự