K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

Giải:

\(A=\dfrac{2005^2-2004}{2005^3+1}\)

\(\Leftrightarrow A=\dfrac{2005^2-2005+1}{\left(2005+1\right)\left(2005^2-2005+1\right)}\)

\(\Leftrightarrow A=\dfrac{1}{2005+1}\left(1\right)\)

\(B=\dfrac{2005^2+2006}{2005^3-1}\)

\(\Leftrightarrow B=\dfrac{2005^2+2005+1}{\left(2005-1\right)\left(2005^2+2005+1\right)}\)

\(\Leftrightarrow B=\dfrac{1}{2005-1}\left(2\right)\)

Ta có:

\(\left(1\right)< \left(2\right)\)

\(\Leftrightarrow A< B\)

Vậy ...

22 tháng 2 2019

TA CÓ  A= \(\left(\frac{2006-2005}{2006+2005}\right)^2\)=\(\frac{1}{4011^2}\)

            B=\(\frac{2006^2-2005^2}{2006^2+2005^2}\) = \(\frac{\left(2006-2005\right)\left(2006+2005\right)}{\left(2006+2005\right)^2-2.2005.2006}\) = \(\frac{4011}{4011^2-2.2006.2005}\)

VÌ 1.(\(4011^2\)-2.200.2005)<\(4011^2\).4011                       (DO \(4011^2\)>\(4011^2\)-2.2006.2005)

\(\Rightarrow\)\(\frac{1}{4011^2}\)\(\frac{4011}{4011^2-2.2005.2006}\) .HAY A<B

                                                                    VẬY A<B

                                                 

a: \(A=\dfrac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}=2005\)

b: \(B=\dfrac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=2004\)

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)

\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)

\(\Rightarrow A>B\)

16 tháng 9 2018

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)

\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)

\(B=\frac{2005^3-1}{2005^2+2006}\)

\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)

Tham khảo nhé~

31 tháng 1 2018

Ta có :

\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{\left(2006-2005\right)^2}{\left(2006+2005\right)^2}=\frac{2006^2-2.2006.2005+2005^2}{2006^2+2.2006.2005+2005^2}=\frac{2006^2-2005^2}{2006^2+2005^2}\)

Vậy \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}\)

30 tháng 12 2017

Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Ta có:

\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)