Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9100>8100 nên 3200>2300
b,\(3^{375}=3^{5.75}=\left(3^5\right)^{75}=243^{75}\)
\(5^{225}=5^{3.75}=\left(5^3\right)^{75}=125^{75}\)
Vì 24375>12575 nên 3375>5225
c,\(99^{20}=99^{2.10}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Vật 9920<999910
d,\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì 81927>31257 nên 291>535
a, \(2^{332}>3^{223}\)
b,\(\frac{17^{17}+1}{17^{16}+1}=\frac{17^{18}+1}{17^{17}+1}\)
So sánh :
a, 6^25 và 5 . 6^24
6^25 = 6^24 . 6^1 =6^24 . 6
Vì 6^24 . 6 > 5 . 6^24 ( 6 > 5 ) => 6^25 > 5 . 6^24
Vậy 6^25 > 5 . 6^24
b, 7 . 2^16 và 2^19
2^19 = 2^16 . 2^3 = 2^16 . 8
Vì 7 . 2^16 < 2^16 . 8 ( 7 < 8 ) => 7 . 2^16 < 2^19
Vậy 7 . 2^16 < 2^19
2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 8111 < 9111 => 2332 < 3223
Ta thấy 2^332<2^333
mà 2^333=(2^3)^111=8^111 (1)
Ta thấy3^223>3^222
mà 3^222=(3^2)^111=9^111 (2)
Từ (1) và (2) => 8^111<9^111
=> 2^332<3^223
Vậy 2^332 < 3^223
Giải:
4.Theo đề bài ta có:
\(A=7.a+4 \)
\(=17.b+3 \)
\(=23.c+11 (a,b,c ∈ N)\)
Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)
\(=17.b+3+150=17.b+17.9=17.(b+9)\)
\(=23.c+11+150=23.c+23.7=23.(c+7) \)
\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)
Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)
Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)
Do \(2587<2737\)
\(\Rightarrow A\div2737\) dư \(2587\)
a, \(2^{225}=\left(2^3\right)^{75}=8^{75}\) và \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(9>8\) nên \(9^{75}>8^{75}\)
Vậy \(2^{225}>3^{150}\)
b, \(2^{91}=\left(2^{13}\right)^7=8192^7\) và \(5^{35}=\left(5^5\right)^7=3125^7\)
Vì 8192 > 3125 nên \(8192^7>3125^7\)
Vậy \(2^{91}>5^{35}\)