Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x=\sqrt{27}-\sqrt{2}\)\(=3\sqrt{3}-\sqrt{2}>3\sqrt{3}-\sqrt{3}=2\sqrt{3}\)
Mà: \(y=\sqrt{3}< 2\sqrt{3}\)
\(\Rightarrow x>y\)
\(b,x=\sqrt{5\sqrt{6}}\Rightarrow x^4=5^2.6=150\)
\(y=\sqrt{6\sqrt{5}}\Rightarrow y^4=6^2.5=180\)
\(\Rightarrow x^4< y^4\Rightarrow x< y\left(x,y>0\right)\)
\(c,x=2m;y=m+2\)
Ta có: \(x-y=2m-\left(m+2\right)=m-2\)
Ta xét các trường hợp:
- Nếu \(m< 2\Rightarrow m-2< 0\Rightarrow x< y\)
- Nếu \(m=2\Rightarrow m-2=0\Rightarrow x=y\)
- Nếu \(m>2\Rightarrow m-2=0\Rightarrow x>y\)
\(a.\) Xét : \(\sqrt{27}-\sqrt{2}-\sqrt{3}=3\sqrt{3}-\sqrt{2}-\sqrt{3}=2\sqrt{3}-\sqrt{2}=\sqrt{2}\left(\sqrt{6}-1\right)>0\)
⇒ \(\sqrt{27}-\sqrt{2}>\sqrt{3}\)
\(b.\) Gỉa sử : \(\sqrt{5\sqrt{6}}>\sqrt{6\sqrt{5}}\)
⇔ \(5\sqrt{6}>6\sqrt{5}\) ⇔ \(\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)< 0\)
⇒ \(\sqrt{5\sqrt{6}}< \sqrt{6\sqrt{5}}\)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)