K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok! 

Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)

\(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)

\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)

P/s: Lâu ko làm nên cũng ko chắc đâu nhé!

13 tháng 12 2018

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

16 tháng 12 2016

ta có \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

=> ( \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)\(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)

=> \(x^2\)\(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(y^2\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(z^2\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)\(x^2+y^2+z^2\)

=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0

nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)

dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)

vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0

18 tháng 8 2019

\(\text{Có: }x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2=2xy+2yz+2xz\)

\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\text{Vì }\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\text{ và }\left(x-z\right)^2\ge0\)

\(\text{Nên để }\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\text{thì }\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(x-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow}x=y=z}\)

\(\text{Khi đó: }x^{2011}+y^{2011}+z^{2011}=3^{2012}\)

\(\Leftrightarrow x^{2011}+x^{2011}+x^{2011}=3^{2012}\left(\text{Vì x = y = z}\right)\)

\(\Leftrightarrow3x^{2011}=3^{2012}\)

\(\Leftrightarrow x^{2011}=3^{2011}\)

\(\Leftrightarrow x=3\)

\(\text{Vậy }x=y=z=3\)

NV
16 tháng 3 2019

a/ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=-7\Rightarrow\left(ab+ac+bc\right)^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(\left(ac\right)^2+\left(ac\right)^2+\left(bc\right)^2\right)=14^2-2.49=98\)

b/ \(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{b^2+c^2}{\left(a^2+b^2+c^2\right)a^2}\right)+y^2\left(\frac{a^2+c^2}{\left(a^2+b^2+c^2\right)b^2}\right)+z^2\left(\frac{a^2+b^2}{\left(a^2+b^2+c^2\right)c^2}\right)=0\)

\(\Leftrightarrow x^2=y^2=z^2=0\) (do \(a;b;c\ne0\))

\(\Rightarrow x=y=z=0\Rightarrow P=0\)

Y
11 tháng 2 2019

+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)

\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)

\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)

\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)

+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)

=> x + y = xy + 1

=> x + y - xy - 1 = 0

=> ( y - 1 ) - x( y - 1 ) = 0

=> ( 1 - x ) ( y - 1 ) = 0

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)

\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)

\(\Rightarrow y^{2010}\left(1-y\right)=0\)

\(\Rightarrow y=1\left(doy>0\right)\)

+ Tương tự nếu y = 1 ta cùng tìm được x = 1

Do đó : A = 2

AH
Akai Haruma
Giáo viên
11 tháng 2 2019

Lời giải khác:

Ta có:

\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)

\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)

\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)

Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)

\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)

Lấy (2)-(1) ta có:

\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)

\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)

Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)

Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)

Mà $x,y$ đều dương nên $x=y=1$

Khi đó ta dễ tính ra $A=2$