Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...........+2^{50}\)
\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)
\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)
\(\Leftrightarrow S=2^{51}-1\)
\(\Leftrightarrow S< 2^{51}\)
\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\dfrac{8}{27}\)
\(=\dfrac{11}{54}\)
Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx
Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\) mà \(2^{-1}< 2^{51}\) là điều quá rõ rồi
Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx
Chúc bn học tốt
Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)
=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)
=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)
=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)
Từ (1);(2) và (3) => đpcm
Gọi số học sinh của lớp 7A, 7B lần lượt là a,b.
Ta có: \(\frac{a}{b}=\frac{12}{11}=>\frac{a}{12}=\frac{b}{11}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{12}=\frac{b}{11}=\frac{a-b}{12-11}=\frac{3}{1}=3\)
=> a = 3.12 = 36
b = 3.11 = 33
Vậy số học sinh lớp 7A là 36 học sinh.
số học sinh lớp 7B là 33 học sinh.
Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)
Ta có :\(A=3+3^2+3^3+...+3^{2008}\)(1)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)(2)
Lấy (2) trừ đi 1 ta có :
\(\Rightarrow2A=3^{2009}-3\)
Ta lại có :
\(2A+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)
ta có: 2^25 - 2^24 + 2^23 = 2^23 . (2^2-2+1) = 2^23.3
2^23-2^22 + 2^21 =2^21.(2^2-2+1) = 2^21.3
=> 2^23.3 > 2^21.3
=> 2^25 - 2^24 + 2^23 > 2^23 - 2^22 + 2^21
có phép trừ ko
nếu ko có thì tổng đó lớn hơn 251
rõ ràng mà