K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

1a, Ta có : 2S=2+2^2+2^3+...+2^51

=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)

=> S = 2^51-1

Vậy S < 2^51

1,b 24^54.54^24.2^10 chia hết 72^63 

24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24... 

=(2^3)^54.3^54.(3^3)^24.2^24.2^10 

= 2^162.2^24.2^10.3^54.3^72 

=2^196.3^126 

72^63=(2^3.3^2)^63 

=(2^3)^63(.3^2)^63=2^189.3^126 

vì 2^196.3^126 chia hết 2^189.3^126 

=>24^54.54^24.2^10 chia hết 72^63 

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n

= 3^(n+2) + 3^n - [2^(n+2) + 2^n] 


Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)

 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|

=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0

Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003

Th1 : 2x ≤ 4003

=> M ≥ 4003-2x ≥ 0

Để m nho nhat thi 2x phai lon nhat 

=> 2x=4003=>x=\(\frac{4003}{2}\)

M ≥ 4003-4003=0                  

Th2 2x ≥ 4003

M ≥ 2x-4003 ≥0

Để M nho nhat thi 2x phai nho nhat

=> 2x=4003=>x=4003/2

M ≥ 4003 -4003=0

Tu 2 truong hop tren ta co GTNN cua M la 0

Xay ra khi x=4003/2

4 tháng 9 2017

Để M đạt GTNN thì:

|x-2002|+|x-2001|> hoặc = 0

Vì |x-2002|> hoặc = 0

|x-2001|> hoặc = 0

Nếu |x-2002|=0

=>x-2002=0

x=2002+0

x=2002

Thay x=2002 ta có:

|2002-2002|+|2002-2001|

=|0|+|1|

=0+1

=1

=> GTNN của M=1

10 tháng 2 2019

f(-1)=2n+2. g(-1)=2n+1.

f(x)+g(x)=2g(x)-x2n+1.

f(x)-g(x)=-x2n+1

10 tháng 2 2019

mình thay -1 vào thôi bạn:

f(x)=x0+x1+x2+....+x2n+1

(có 2n+2 hạng tử)

f(-1)=1-(-1)+1-(-1)+1-........+1-(-1)

=1+1+1+1+....+1 =2n+1

(có 2n+1) hạng tử

23 tháng 7 2015

a/ \(\Leftrightarrow3^{2x}:3^2=\left(\frac{1}{3}\right)^5\Rightarrow3^x=\frac{1}{3^5}\Rightarrow3^x.3^5=1\Rightarrow3^{5x}=3^0\)

=> 5x = 0 => x = 0 

8 tháng 9 2016

a) ( x - 2/9 )3 = ( 2/3 ) 6

=>  ( x - 2/9 )3 = (4/9 )3

=> x - 2/9 = 4/9

=> x = 4/9 - 2/9

=> x = 2/9

25 tháng 9 2016

Tìm x

a) ( x - 2/9 )3 = ( 2/3 ) 6

b) ( 8x - 1 ) 2n + 1 = 5 2n + 1

a) ( x - 2/9 )3 = ( 2/3 ) 6

=>  ( x - 2/9 )3 = (4/9 )3

=> x - 2/9 = 4/9

=> x = 4/9 - 2/9

=> x = 2/9

\(A\left(x\right)=0\)

\(A\left(x\right)=\left(x^2-1\right)\left(x^2-9\right)...\left[x^2-\left(2n-1\right)^2\right]\left[x^2-\left(2n+1\right)^2\right]=0\)

Vậy nghiệm của đa thức A là \(=\left\{1;-1;3;-3;...;2n-1;1-2n;2n+1;-2n-1\right\}\)

Thấy các nghiệm tương ứng tạo thành cặp số đối nên tổng của chúng = 0