Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\left(\dfrac{1}{32}\right)^7=\left(\dfrac{1}{2}\right)^{35}\)
\(\left(\dfrac{1}{16}\right)^9=\left(\dfrac{1}{2}\right)^{36}\)
mà 35<36
nên \(\left(\dfrac{1}{32}\right)^7< \left(\dfrac{1}{16}\right)^9\)
a) Ta có :
\(A=\frac{10^{2010}+1}{10^{2011}+1}\)
\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}\)
\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)
Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)
\(\Rightarrow A>B\)
Vậy : \(A>B\)
b) Ta có :
\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)
\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)
Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy : B < A
Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
\(A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{2007}\right)\left(1-\frac{1}{2008}\right)\)
\(=\frac{9}{10}.\frac{10}{11}.\frac{11}{12}.....\frac{2006}{2007}.\frac{2007}{2008}\)
\(=\frac{9.10.11.....2006.2007}{10.11.12.....2007.2008}\)
\(=\frac{9}{2008}\)
\(Ta\) \(có:\)
\(A=\frac{9}{2008}\)
\(B=\frac{1}{2000}\)
\(\frac{9}{2008}=\frac{9.250}{2008.250}=\frac{2250}{502000}\)
\(\frac{1}{2000}=\frac{1.251}{2000.251}=\frac{251}{502000}\)
Vì \(\frac{2250}{502000}>\frac{251}{502000}\Rightarrow A>B\)
\(A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{2007}\right)\left(1-\frac{1}{2008}\right)\)
\(A=\frac{9}{10}.\frac{10}{11}.\frac{11}{12}....\frac{2006}{2007}.\frac{2007}{2008}\)
\(A=\frac{9.10.11....2006.2007}{10.11.12...2007.2008}\)
\(A=\frac{9}{2008}\)
Vì \(\frac{9}{2008}<\frac{1}{2000}\)
hay A<B
\(\frac{2}{3}+\frac{1}{3}\left(\frac{-4}{9}+\frac{5}{6}\right)\div\frac{7}{12}\)
\(=\frac{2}{3}+\frac{1}{3}\left(\frac{-4}{9}+\frac{5}{6}\right)\times\frac{12}{7}\)
\(=\frac{2}{3}+\frac{4}{7}\left(\frac{-4}{9}+\frac{5}{6}\right)\)
\(=\frac{2}{3}+\frac{4}{7}\left(\frac{-8}{18}+\frac{15}{18}\right)\)
\(=\frac{2}{3}+\frac{4}{7}.\frac{-7}{18}\)
\(=\frac{6}{9}+\frac{-2}{9}\)
\(=\frac{4}{9}\)
\(\frac{298}{719}\div\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\div\left(\frac{3}{12}+\frac{1}{12}-\frac{4}{12}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\div0-\frac{2011}{2012}\)
Vậy biểu thức đại số này không xác định
\(\frac{2011.4023+2012}{2012.4023-2011}=\frac{2011.4023+2011+1}{2012.4023-2012-1}=\frac{2011.4023+2011.1+1}{2012.4023-2012.1-1}\)
\(=>\frac{2012.4023+2012.1+1}{2012.4023-2012.1-1}=\frac{2012.\left(4023+1\right)+1}{2012.\left(4023-1\right)-1}\)
\(=\frac{4023+1+1}{4023-1-1}=\frac{4023+2}{4023-2}=\frac{4025}{4021}\)
Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1
<br class="Apple-interchange-newline"><div id="inner-editor"></div>=>2012.4023+2012.1+12012.4023−2012.1−1 =2012.(4023+1)+12012.(4023−1)−1
=4023+1+14023−1−1 =4023+24023−2 =40254021
Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1