\(\sqrt{9-\sqrt{17}.}\sqrt{9+\sqrt{17}}\) và \(3\sqrt{17}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

+) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)

\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)

\(=\sqrt{9^2-\left(\sqrt{17}\right)^2}\)

\(=8\)

+) \(3\sqrt{17}\approx12,4\)

\(\Rightarrow3\sqrt{17}>\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)

6 tháng 6 2019

b) có

\(17< 10,25\Rightarrow\sqrt{17}< 4,5\)

\(29< 20,15\Rightarrow\sqrt{19}< 4,5\)

\(\Rightarrow\sqrt{17}+\sqrt{19}< 4,5+4,5=9\)

8 tháng 6 2019

a) có \(27< 36\)nên \(\sqrt{27}< 6\)

\(\Rightarrow3\sqrt{27}< 18\)(1)

có \(19< 25\Rightarrow\sqrt{19}< 5\Rightarrow23-\sqrt{19}>18\)(2)

từ (1) và (2) suy ra 

\(23-\sqrt{19}>3\sqrt{27}\Rightarrow\frac{23-\sqrt{19}}{3}>\sqrt{27}\)

xin lỗi giờ mình mới nghĩ ra câu a

23 tháng 7 2017

a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)

\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)

\(=\sqrt{81-17}=\sqrt{64}=8\)

b) \(\sqrt{7+4\sqrt{3}}=\sqrt{4+3+4\sqrt{3}}\)

\(=\sqrt{2^2+\sqrt{3}^2+2.2.\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}\)

22 tháng 6 2018

Bài làm của: Phùng Khánh Linh

c)\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)

= \(\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{4^2-2.4.\sqrt{8}+\left(\sqrt{8}\right)^2}\)

= \(\sqrt{\left(3-2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{\left(4-\sqrt{8}\right)^2}\)

= \(\left|3-2\sqrt{2}\right|-\left|4-\sqrt{8}\right|\)

= (3 - 2\(\sqrt{2}\)) - (4 - \(\sqrt{8}\))

= 3 - 2\(\sqrt{2}\) - 4 + \(\sqrt{8}\)

= -1

22 tháng 6 2018

\(a.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\text{|}\sqrt{3}+1\text{|}-\text{|}\sqrt{3}-1\text{|}=2\)\(b.\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\text{|}\sqrt{5}-2\text{|}-\text{|}\sqrt{5}+2\text{|}=-4\) Còn lại tương tự nhé .

11 tháng 8 2018

Đặt:

\(A=\sqrt{9-\sqrt{17}}+\sqrt{9+\sqrt{17}}\)

\(A^2=9-\sqrt{17}+2\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}+9+\sqrt{17}=18+2\sqrt{81-17}=18+2\sqrt{64}=18+2\cdot8=18+16=34\)

=> A = \(\sqrt{34}\)

12 tháng 8 2018

đề bài là \(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}\)nên kết quả là \(\sqrt{2}\)

cảm ơn bạn đã nêu cách giải

12 tháng 8 2016

a) Sai đề 

16 tháng 6 2018

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)

30 tháng 6 2021

Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)

=> \(\sqrt{8}+3< 6\)

Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)

=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)

=> \(\sqrt{48}+\sqrt{35}< 13\)

=> \(\sqrt{48}< 13-\sqrt{35}\)

c) Ta có \(-\sqrt{19}< -\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)

d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);

\(-\sqrt{58}>-\sqrt{59}\)

=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)

<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

b: \(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

c: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)

d: \(=\dfrac{\sqrt{18-2\sqrt{17}}-\sqrt{18+2\sqrt{17}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{17}-1-\sqrt{17}-1}{\sqrt{2}}=-\sqrt{2}\)

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi