Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19
Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Đặt \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}............\frac{1-100^2}{100}\)
\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}............\frac{-9999}{100^2}\)
\(\Rightarrow A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}...............\frac{-99.101}{100^2}\)
\(\Rightarrow A=\frac{-\left(1.2.3.............99\right).\left(3.4.5............101\right)}{\left(2.3.4......100\right).\left(2.3.4.............100\right)}\)
\(\Rightarrow A=\frac{-1.101}{100.2}=\frac{-101}{200}\)
Vậy \(A=\frac{-101}{200}\)
Chúc bn học tốt
Có: \(\left(-\frac{1}{3}\right)^{100}=\left(-\frac{1}{3}\right)^{50}.\left(-\frac{1}{3}\right)^{50}=\left(\frac{1}{9}\right)^{50}\)
Mặc khác: \(\left(-\frac{1}{9}\right)^{48}< \left(\frac{1}{9}\right)^{50}\)
Vậy: \(\left(-\frac{1}{3}\right)^{100}>\left(-\frac{1}{9}\right)^{48}\)