Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(1-\frac{21}{22}=\frac{1}{22};1-\frac{2011}{2012}=\frac{1}{2012}\)
\(\Rightarrow\frac{1}{22}>\frac{1}{2012}\)
\(\Rightarrow1-\frac{21}{22}>1-\frac{2011}{2012}\Rightarrow\frac{21}{22}< \frac{2011}{2012}\)
b) ta có: \(\frac{31}{95}=0,32;\frac{2012}{6035}=0,33\)
=> 0,32 < 0,33
=> 31.95 < 2012/6035
b) \(\frac{21}{22}\)< \(\frac{2011}{2012}\)
c) \(\frac{31}{95}\) < \(\frac{2012}{6035}\)
chúc bạn học tốt.
\(\frac{31}{95}\)<\(\frac{1}{3}\)
\(\frac{1}{3}=\frac{2012}{6035}\)<
a) ta có: \(1-\frac{5}{8}=\frac{3}{8};1-\frac{7}{10}=\frac{3}{10}\)
\(\Rightarrow\frac{3}{8}>\frac{3}{10}\Rightarrow1-\frac{5}{8}>1-\frac{7}{10}\)
\(\Rightarrow\frac{5}{8}< \frac{7}{10}\) ( vì 5/8 và 7/10 đều lấy 1 trừ đi 5/8 và 7/10 => 1 trừ đi số nào có kết quả lớn hơn thì số trừ chắc chắn sẽ nhỏ)
b) ta có: \(\frac{31}{95}=0,32;\frac{2012}{6035}=0,33\)
=> 0,32 < 0,33
=> 31/95 < 2012/6035
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
\(1-\frac{23}{27}=\frac{4}{27}=\frac{8}{54}\)
\(1-\frac{21}{29}=\frac{8}{29}\)
Ta thấy :
\(\frac{8}{54}< \frac{8}{29}\)
\(=>A>B\)
Ta tìm phần bù
\(1-\frac{23}{27}=\frac{4}{27}\)\(1-\frac{21}{29}=\frac{8}{29}\)
\(\frac{4}{27}=\frac{8}{54};\frac{8}{54}< \frac{8}{29}\)
Ta đảo dấu
\(\Rightarrow A>B\)
Ta có : 1 - 2012/2015 = 3/2015
1 - 2015/2018 = 3/2018
Vì 3/2015 > 3/2018 nên 2012/2015 < 2015/2018
1-2012/2015=3/2015
1-2015/2018=3/2018
Vì 3/2015>3/2018=>2012/2015<2015/2018
Ta có: \(\frac{31}{95}=\frac{31\times64}{95\times64}=\frac{1984}{6080}< \frac{2012}{6080}< \frac{2012}{6035}\)
Vậy \(\frac{31}{95}< \frac{2012}{6035}\)