K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(3\sqrt[3]{3}=\sqrt[3]{81}>\sqrt[3]{80}\)

20 tháng 10 2021

Không biết đọc đề hả bạn???

27 tháng 2 2017

Câu hỏi của Đừng thương hại tôi Điều tôi muốn nói - Toán lớp 9 | Học trực tuyến

13 tháng 6 2018

\(C=\sqrt[3]{2011}-\sqrt[3]{2010}=\frac{2011-2010}{\left(\sqrt[3]{2011^2}+\sqrt[3]{2011}\sqrt[3]{2010}+\sqrt[3]{2010^2}\right)}=\frac{1}{\left(\sqrt[3]{2011^2}+\sqrt[3]{2011}\sqrt[3]{2010}+\sqrt[3]{2010^2}\right)}\)

\(B=\sqrt[3]{2010}-\sqrt[3]{2009}=\frac{2010-2009}{\left(\sqrt[3]{2010^2}+\sqrt[3]{2010}\sqrt[3]{2009}+\sqrt[3]{2009^2}\right)}=\frac{1}{\left(\sqrt[3]{2010^2}+\sqrt[3]{2010}\sqrt[3]{2009}+\sqrt[3]{2009^2}\right)}\)Vì \(\left(\sqrt[3]{2011^2}+\sqrt[3]{2011}\sqrt[3]{2010}+\sqrt[3]{2010^2}\right)>\left(\sqrt[3]{2010^2}+\sqrt[3]{2010}\sqrt[3]{2009}+\sqrt[3]{2009^2}\right)\)

\(B< C\)

13 tháng 6 2018

lập phương B , C lên 

24 tháng 8 2017

Bình phương hai vế liên tiếp ta có \(\sqrt{3\sqrt{2}}=3\sqrt{2}=\sqrt{18}=18\)

\(\sqrt{2\sqrt{3}}=2\sqrt{3}=\sqrt{12}=12\)

\(\rightarrow18>15\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

21 tháng 6 2019

a, Ta có: \(\left(\sqrt{2}+\sqrt{3}\right)^2\)\(2+2\sqrt{6}+3=5+2\sqrt{6}\)

Lại có \(3^2=9=5+4\)mà \(2\sqrt{6}>4\)

suy ra \(\left(\sqrt{2}+\sqrt{3}\right)^2>9\)

suy ra \(\sqrt{2}+\sqrt{3}>3\)

b, Ta có: \(\left(\sqrt{11}-\sqrt{3}\right)^2=11-2\sqrt{33}+3=14-2\sqrt{33}\)

Lại có: \(2^2=4=14-10\)mà \(2\sqrt{33}>10\)

suy ra \(\left(\sqrt{11}-\sqrt{3}\right)^2< 2^2\)

suy ra \(\sqrt{11}-\sqrt{3}< 2\)

21 tháng 6 2019

#)Giải :

a) √2 +√3 = √( √2 + √3 )2 = √( 5 + 2√6 ) = √( 5 + √24 ) 

3 = √9 = √( 5 + √16 )                                          

=> √2 + √3 > 3

30 tháng 6 2021

Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)

=> \(\sqrt{8}+3< 6\)

Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)

=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)

=> \(\sqrt{48}+\sqrt{35}< 13\)

=> \(\sqrt{48}< 13-\sqrt{35}\)

c) Ta có \(-\sqrt{19}< -\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)

d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);

\(-\sqrt{58}>-\sqrt{59}\)

=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)

<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)