K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

3^20 và 2^30 ( nghe còn có lý )

Ta có ; 3^20 = 3^2 . 10 = ( 3^2 ) ^ 10 = 9^10

2^30 = 2^3 . 10 = ( 2^3 ) ^ 10 = 8^10

Vì 8^10 < 9610

Nên 2^30 < 3^20

7 tháng 8 2017

\(3^{19}>2^{30}\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

AH
Akai Haruma
Giáo viên
29 tháng 2 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

1 tháng 8 2019

a) 230 = ( 22 )15 = 415  < 2215 . 315

b) 320 = ( 34 )5 = 815 

220 . 55 = ( 24 )5 . 55 = ( 24 . 5 )5 = 805

nên 320 < 220 . 55

8 tháng 11 2015

a)Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)

\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)

Vì \(5^{30}<6^{30}\)

=>\(25^{15}<8^{10}.3^{30}\)

 

24 tháng 10 2016

Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)

Ta có:

\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)

\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

=> A > B

25 tháng 10 2016

Hôm qua tôi làm được rồi, cảm ơn cậu!

24 tháng 10 2016

Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)

=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)

=>10A=1+\(\frac{9}{10^{20}+1}\)

Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)

=>10B=1+\(\frac{9}{10^{21}+1}\)

Do \(\frac{9}{10^{20}+1}\)\(\frac{9}{10^{21}+1}\)=>A > B

22 tháng 4 2017

a) So sánh (-2).3 và -4.5.

Ta có: -2 < -1,5 và 3 > 0

=>(-2).3 < (-1,5).3

=>(-2).3 < -4,5

b) Từ bất đẳng thức: (-2).3 < -4,5 ta nhân cả hai vế của bất đẳng thức với 10 > 0 thì được: (-2).30 < -45

Từ bất đẳng thức: (-2).3 < -4,5 ta cộng vào cả hai vế với 4,5 thì được:

(2).30+4,5<4,5+4,5(−2).30+4,5<−4,5+4,5

=>(-2).30 + 4,5 < 0

18 tháng 7 2020

b) A = 2010 . 2012

        = ( 2011 - 1 )( 2011 + 1 )

        = 20112 - 12 = 20112 - 1

20112 - 1 < 20112 => A < B 

20 tháng 9 2018

\(2\sqrt{3+\sqrt{5}}=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{2}\cdot\left(\sqrt{5}+1\right)\)

\(=\sqrt{10}+\sqrt{2}>\sqrt{10}+1\)

Vậy ....