K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Ta có :

\(\sqrt[3]{26}\approx3\)\(\sqrt[3]{7}\approx2\)

\(\Leftrightarrow\sqrt[3]{26}+\sqrt[3]{7}\approx5\)

Mà: \(\sqrt[3]{126}+1\approx6\)

\(\Leftrightarrow\sqrt[3]{26}+\sqrt[3]{7}< 1+\sqrt[3]{126}\)

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

13 tháng 8 2018

Cho mình KQ xấp xỉ ở các ý

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

4 tháng 8 2020

\(4\)và \(1+2\sqrt{2}\)

Ta có \(3=\sqrt{9}\)

           \(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)

Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)

Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)

4 tháng 8 2020

\(4\)và \(2\sqrt{6}-1\)

Ta có \(5=\sqrt{25}\)

          \(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{24}\)

Ta lại có \(25>24\Leftrightarrow\sqrt{25}>\sqrt{24}\)

Hay \(5>2\sqrt{6}\Leftrightarrow5-1>2\sqrt{6}-1\Leftrightarrow4>2\sqrt{6}-1\)

29 tháng 8 2020

\(a\)

\(\sqrt{11}+\sqrt{19}\)

\(=\)\(\sqrt{11+19}\)

\(=\)\(\sqrt{30}\)

\(=\)\(5,47\)

\(\sqrt{47}\)

\(=6,85\)

\(5,47\)\(< \)\(6,85\)

\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)

\(b\)

\(\sqrt{7}+\sqrt{26}+1\)

\(=\)\(\sqrt{7+26}+1\)

\(=\)\(\sqrt{33}+1\)

\(=\)\(5,74+1\)

\(=\)\(6,74\)

\(\sqrt{63}\)

\(=\)\(7,93\)

\(6,74\)\(< \)\(7,93\)

\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)

Học tốt!!!

16 tháng 5 2019

a,

(2 - â3)â26 + 15â3 - (2 + â3)â26 - 15â3,Toán há»c Lá»p 9,bà i tập Toán há»c Lá»p 9,giải bà i tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

b,

Tính B = (1/cÄn3 + 1/3cÄn2 + 1/cÄn3 * cÄn(5/12 - 1/6)) * 1/3,Toán há»c Lá»p 9,bà i tập Toán há»c Lá»p 9,giải bà i tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

20 tháng 7 2018

\(TC:\left(\sqrt{5}+\sqrt{3}\right)^2=8+2\sqrt{15}\)

\(3^2=9=8+1=8+\sqrt{1}\)

vi \(15>1\Rightarrow\sqrt{15}>\sqrt{1}\Leftrightarrow\sqrt{15}>1\Rightarrow2\sqrt{15}>1\)

\(\Rightarrow8+2\sqrt{15}>8+1\Leftrightarrow8+2\sqrt{15}>9\)

\(\Rightarrow\sqrt{8+2\sqrt{15}}>\sqrt{9}\)

\(\Rightarrow\sqrt{5}+\sqrt{3}>3\)

DKXD: x khac 7

20 tháng 7 2018

Ta có : 

\(\sqrt{5}+\sqrt{3}>\sqrt{4}+\sqrt{1}=2+1=3\)

Vậy \(\sqrt{5}+\sqrt{3}>3\)

10 tháng 8 2020

a)

Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)

Vậy \(4>1+2\sqrt{2}\)

b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)

Vậy \(4>2\sqrt{6}-1\)

c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\) 

=> \(3\sqrt{3}< 2\sqrt{7}\)

=> \(-3\sqrt{3}>-2\sqrt{7}\)