K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Ta so sánh hai phân số \(\frac{2010}{2011}\)và \(\frac{1000}{999}\)có :

\(\frac{2010}{2011}< \frac{1000}{999}\)

\(\Rightarrow\left(\frac{-2010}{2011}\right)>\left(\frac{-1000}{999}\right)\)

Vậy ...

30 tháng 9 2016

N =\(\frac{2010+2011+2012}{2011+2012+2013}\)

\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)

a: 2010/2011=1-1/2011

2011/2012=1-1/2012

mà -1/2011>-1/2012

nên 2010/2011>2011/2012

b: \(\dfrac{2010}{2011}< 1< \dfrac{2001}{2000}\)

nên -2010/2011>-2001/2000

25 tháng 8 2018

Ta có \(x=\frac{357}{-352}\)

\(\Rightarrow-x=\frac{357}{352}=1+\frac{2}{352}=\frac{1}{176}\)

Ta có \(y=\frac{-1000}{999}\)

\(\Rightarrow-y=\frac{1000}{999}=1+\frac{1}{999}\)

Vì \(\frac{1}{176}>\frac{1}{999}\Rightarrow1+\frac{1}{176}>1+\frac{1}{999}\Rightarrow-x>-y\Rightarrow x< y\)

Khi đó x < y

Vậy....

27 tháng 8 2018

\(-x=\frac{357}{352}=1+\frac{5}{352}\)

\(-y=\frac{1000}{999}=1+\frac{1}{999}\)

\(\frac{5}{352}>\frac{5}{999}>\frac{1}{999}\)

\(=>\frac{357}{352}>\frac{1000}{999}=>-x>-y\)

\(=>x< y\)

25 tháng 8 2018

Cộng cả x và y với 1 ta được

x + 1 = \(\frac{-357}{352}+1=\frac{-5}{352}\)\(\frac{-1}{352}\)

y + 1 = \(\frac{-1000}{999}+1=\frac{-1}{999}\)>\(\frac{-1}{352}\)

Như vậy x + 1 < y + 1 hay x < y

21 tháng 3 2018

Ta có : 

\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)

Lại có : 

\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)

Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)

Vậy \(M>N\)

Chúc bạn học tốt ~ 

8 tháng 7 2016

a) Ta có:

-1/10 < 0

1/1000 > 0

=> -1/10 < 1/1000

b) Ta có:

357/358 < 1

1000 / 999  > 1

=> 357/358  < 1000/999

=> -357/358  > -1000/999

c) -151515/313131 = -15/31

Vậy -15/13 = -151515/313131

27 tháng 11 2016

Ta có :

\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)

=> C < 1 / 3

27 tháng 11 2016

Ta có:

\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\Rightarrow C< \frac{1}{3}\)

Vậy \(C< \frac{1}{3}\)